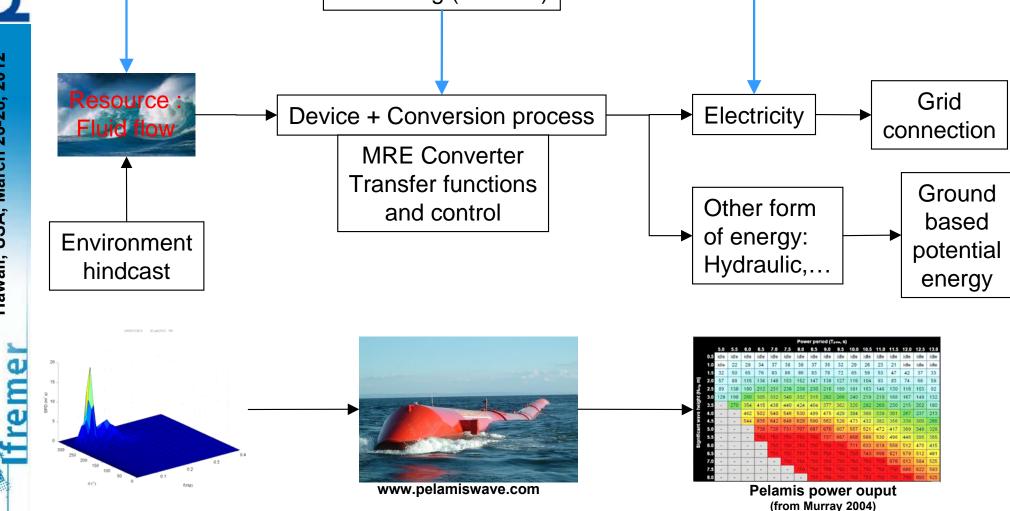


Ifremer


Mechanical energy wind, waves, current

Marc Le Boulluec

Institut Français de Recherche pour l'Exploitation de la Mer French Research Institute for Exploration of the Sea IFREMER France

Mechanical Marine Renewable Energy From resource to energy conversion

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

Ifremer

Mechanical Marine Renewable Energy


Resource and conversion principles



freme

Wind energy

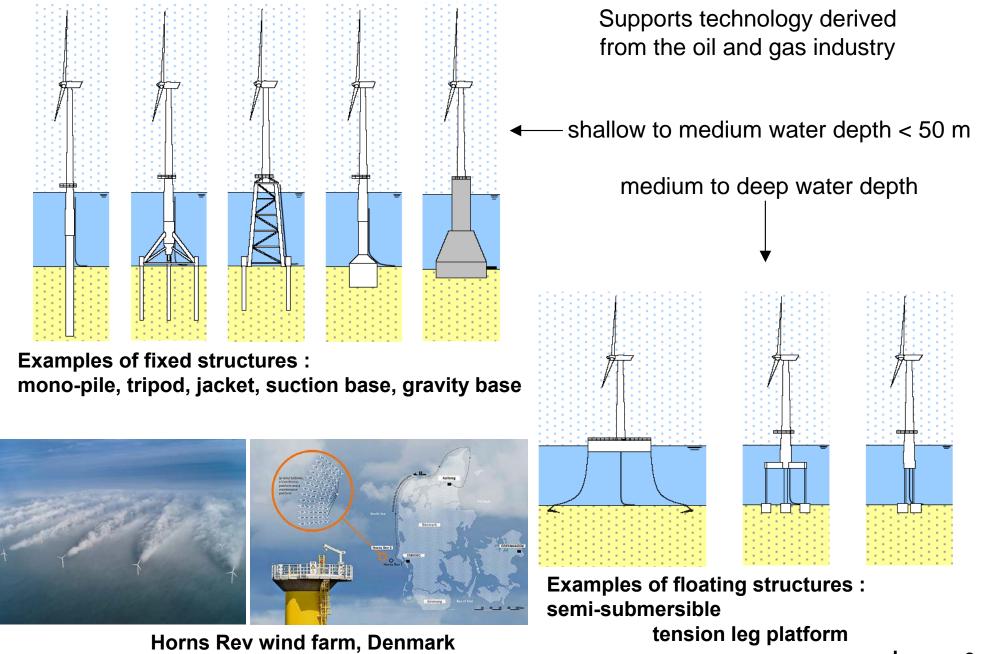
Wind energy is an intermittent resource. Short term meteorological prediction are improving. Yearly tendencies are available from large scale observations.

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

ffremer

Wind energy

Conversion principles of wind energy are the most mature, based on the experience from terrestrial wind energy.


Differences from terrestrial wind energy :

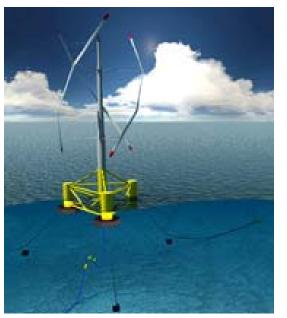
- sea wind is stronger, more regular and less turbulent compared to ground wind
- the marine environment is more aggressive
- wind turbines and floating support interact :
 - damping effect of the rotor
 - gyroscopic effects of the rotor
 - dynamic stress in the floater, the mast and the turbine

eme.

Wind energy

spar buoy 6

Ifremer

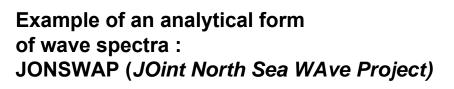

Wind energy

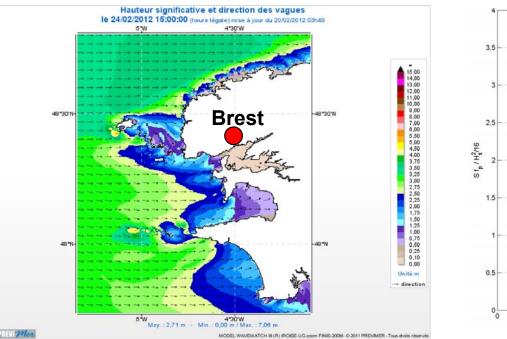
HyWind (Statoil, Norvège) www.statoil.com 2.3 MW

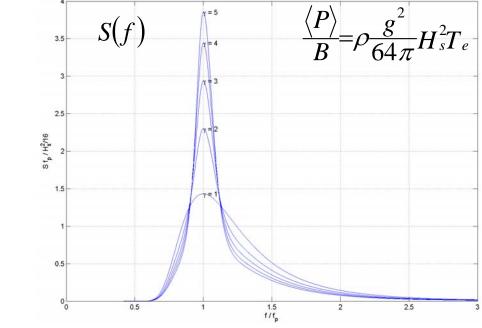
WINFLO (France) nassetwind.com

Nenuphar (France) www.nenuphar-wind.com

Windfloat (USA) www.principlepowerinc.com/products/windfloat.html




ffremer


Wave energy

Wind energy is an intermittent resource, related to the far wind generation (swell) and close wind generation (wind seas), characterised by statistics and probability of occurrence of waves spectra, and recorded in waves atlas.

Example of numerical prediction : Mer d'Iroise, France www.previmer.org/previsions/vagues

Ifremer

Wave energy

Sea states statistics

Example of sea states statistics based on measurement Réunion island, France Relation : Significant wave height – Energy period

CANDHIS Centre d'Archivage National de Données de Houle In-Situ

Campagne :	97405 - Saint Pierre
Coordonnées :	021°21,170'S - 055°28,660'E
Profondeur :	27.00 mètres

Corrélogramme - Hm0/Te - GLOBAL																					
(Hauteur significative spectrales des vagues / Priode moyenne nergtique)																					
hm0 (m)	te (Secondes)																				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
1	1			1	6	56	220	652	1202	1236	912	382	63	12	2						4745
2						12	447	1989	3659	4270	3700	2933	1724	694	163	24	11				19626
3							6	84	447	1001	1041	772	622	490	235	82	25	7	2		4814
4								6	7	132	185	156	155	139	89	41	4	1	1	1	917
5										1	34	70	74	46	39	12	10	3	1		290
6													6	2	2	5	3	3	1		22
7																3	1	1	2		7
8																	2	1			3
9												1									1
10													1		1	1	2	2	2	1	10
Total	1			1	6	68	673	2731	5315	6640	5872	4314	2645	1383	531	168	58	18	9	2	
	Les valeurs du tableau sont exprimées en nombre d'éléments - Les case vides correspondent à des valeurs nulles.																				

 Code des couleurs

 >= 10 ‰
 >= 30 ‰
 >= 50 ‰

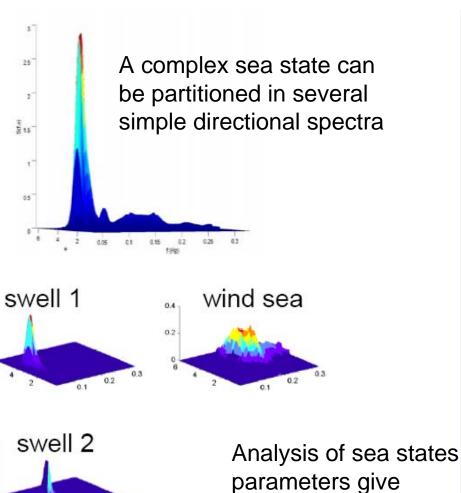
candhis.cetmef.developpement-durable.gouv.fr

ffremer

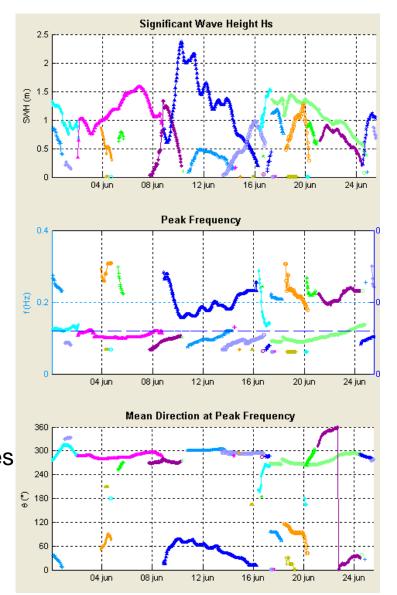
Wave energy

25

05


3

0.4


0.2

0.1

Sea state partitioning

Sea state tracking

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

information on the

origin of the waves

fremer

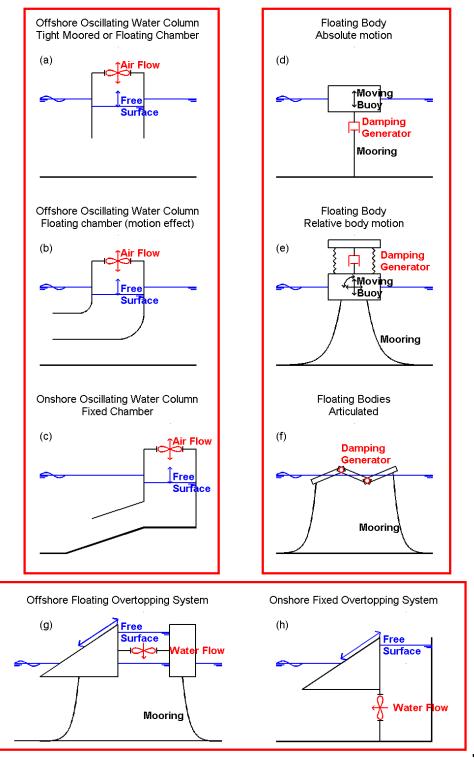
Wave energy

Wave energy conversion principles are the most various and gave rise to many concepts.

The wave energy converters are designed to operate around their natural periods et to stand stresses induced by the most energetic marine environments.

These targets are against the common objectives and operating situation of the ocean vehicles (ships, oil and gas platforms) for which minimum stresses and responses are sought.

Beside the action of waves, actions of current and wind must be taken into account in the design of wave energy converters in terms of energy production and structural strain.



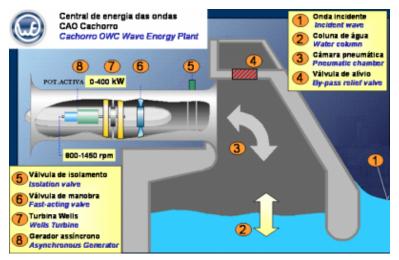
ffremer

Wave energy

The basic principles of wave energy capture are :

- oscillating water columns
- moving bodies
- overtopping systems
- other (membranes,...)

ffremer


Wave energy

Basic principles of wave energy

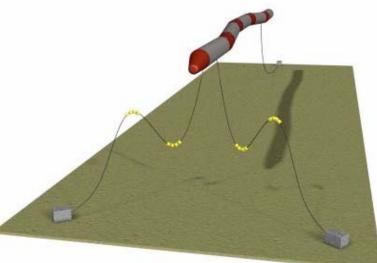
• oscillating water columns

Oscillating Water Column in Pico (Açores) www.pico-owc.net

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

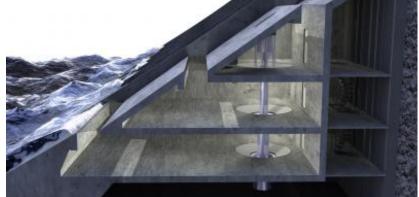
ifremer

Wave energy


Basic principles of wave energy

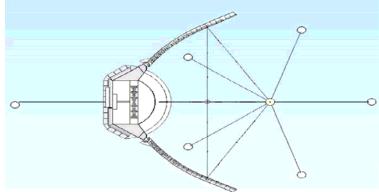
• moving bodies

Articulated device : Pelamis www.pelamiswave.com


ffremer

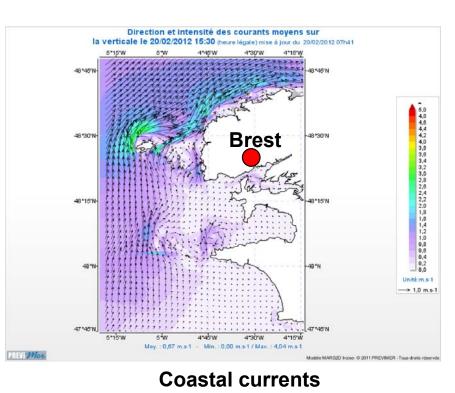
Wave energy

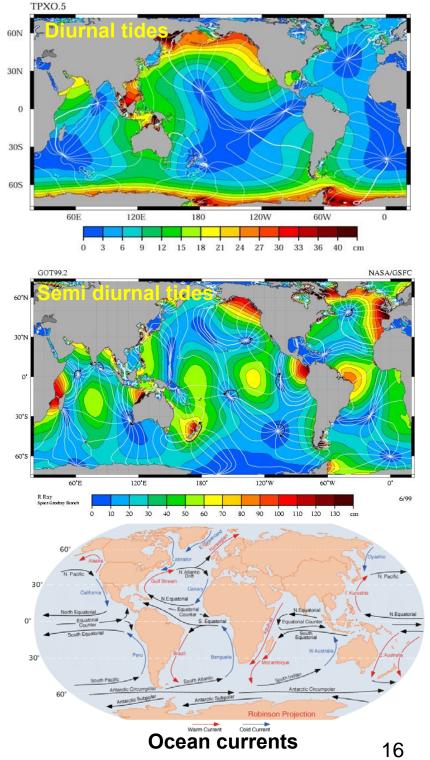
Basic principles of wave energy


• overtopping devices

Floating device : Wave Dragon www.wavedragon.net

Fixed device : Seawave Slot Cone Generatorwww.waveenergy.noPECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy



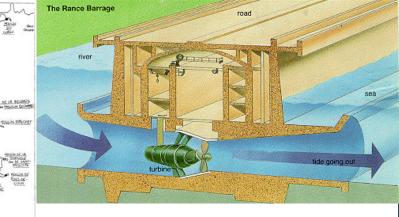


Tidal and current energy

The resource is predictable. The tidal height and current speed can be computed at a given place and at a given time.

Example of numerical prediction : Mer d'Iroise, France www.previmer.org/previsions/courants

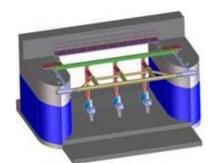
PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy



reme

Tidal and current energy

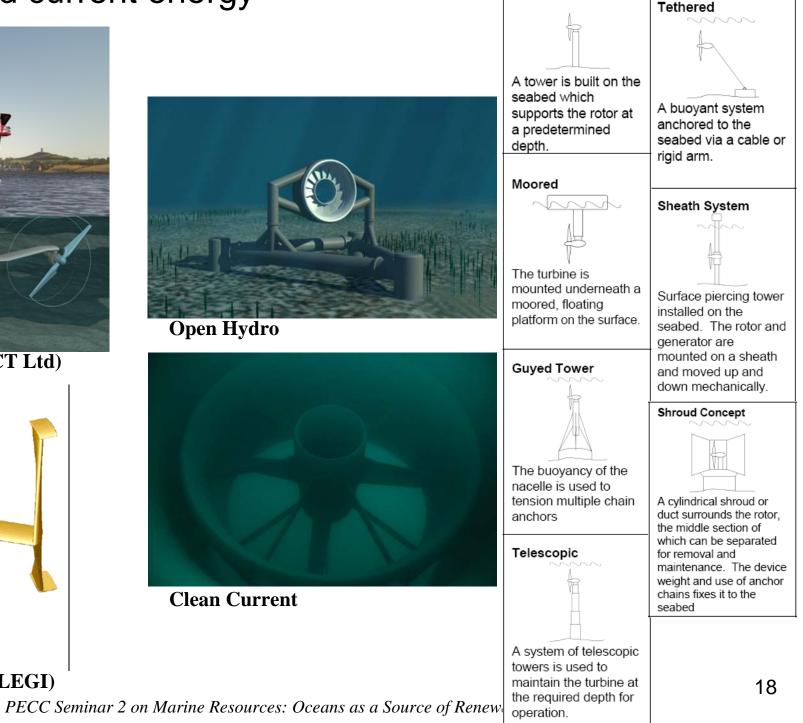
Use of artificial reservoirs



www.tidaltesting.nl

Coastal protection barrage Experimental site Den Oever, Hollande

www.tocardo.com Turbine 45 kW T50 PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy


Tidal and current energy

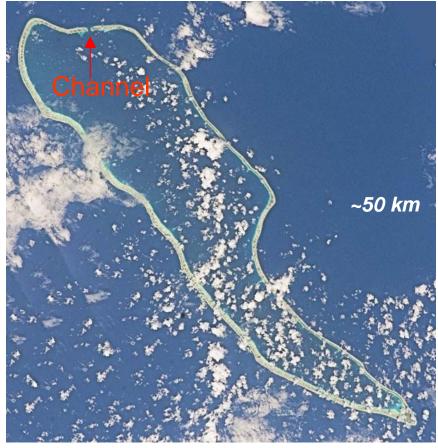
SeaGen (MCT Ltd)

HARVEST (LEGI)

Pile Mounted

Hawaii, USA, March 26-28, 2012

ffreme


fremer

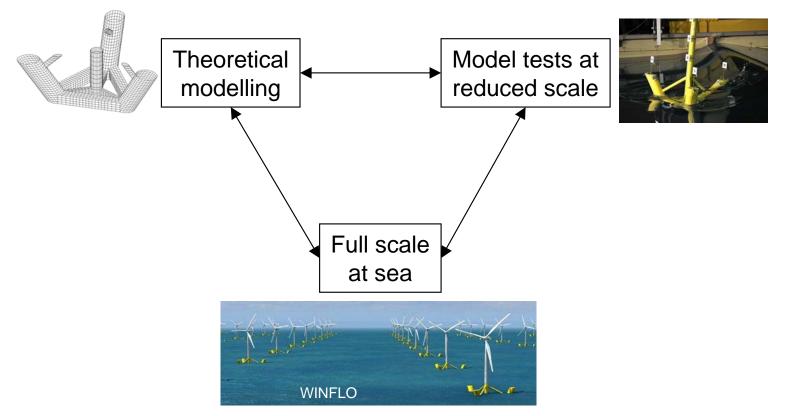
Tidal and current energy

Particular aspects of kinetic energy from currents

Natural site on Maré island, Loyauté islands (not exploited) Hao atoll, Tuoamotu archipelago (not exploited)

Mechanical Marine Renewable Energy

Action of the environment and response of the MRE converters


freme

Mechanical Marine Renewable Energy

Action of the environment and response of the MRE converters

Action of wind, waves and current is basically modelled by fluid mechanics and fluid structure interaction.

The response can be assessed by three complementary approches : numerical modelling, model testing, full scale observation

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

fremer

Needs in term of research

Seakeeping scaling effects

Differences between model scale and full scale behaviour is mainly related to the fluid viscous effects, air compressibility if any, power take off modelling.

There is a need for « equivalent » conversion device at model scale to properly model the Power Take Off effects.

Validation of numerical modelling toward model scale tests enables "extrapolation" to full scale.

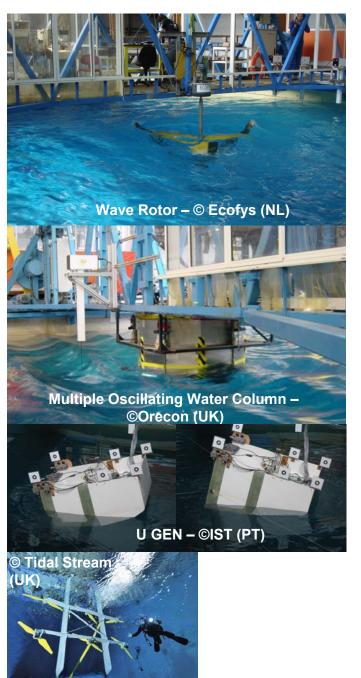
Return of experience is then needed from full scale trials in order to more precisely assess the calibration of numerical models.

ffremer

Laboratory and sea trials

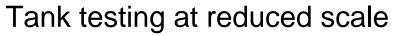
The knowledge and assessment of MRE converters design require various trials at different model scales :

- material testing with analysis of ageing in marine environment (tests on samples and at full scale)
- bench testing of electrical systems (scale ~ 1)
- trials in tanks with influence of waves, current and wind (scales >1/50 and preferably ~1/20)
- at sea tests in dedicated sites (scale ~ 1/4 to 1/1)
- resource assessment at sea:
 - wave and current interaction
 - current profile and turbulence
 - wind profile and turbulence
 - measurements techniques (ADCP, HF radar)

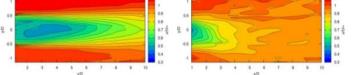


Laboratory trials

Tank testing at reduced scale



copyright "© Ifremer/O. Dugornay"

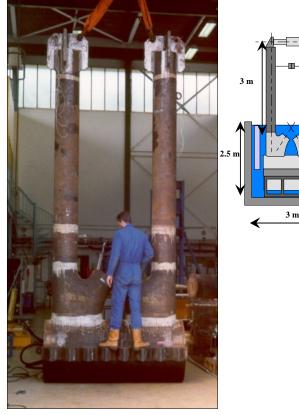

Ifreme

Laboratory trials

Influence of turbulence on current turbines :

Turbines interaction and wake effects :

Newsletters: wwz.ifremer.fr/manchemerdunord/Technologie-marine/Newsletters


freme

Laboratory trials

Behaviour and protection of materials and structures in a marine environment

Metallic alloys

- Corrosion phenomena and protection
- Fatigue \bullet

Fatigue test on a piece of an offshore structure

Composites and polymers

- Evaluation of properties
- Ageing

Characterisation of synthetic lines

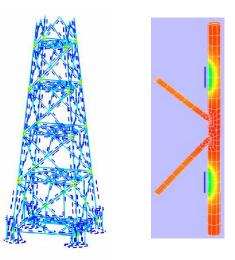
Yarn 30 T

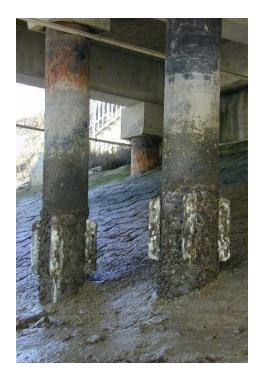
Rope 450-700T

Short term : stiffness - Long term : creep

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

Filament

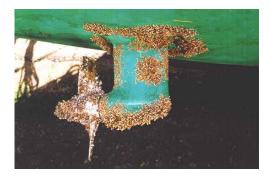

freme

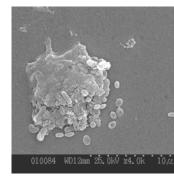

Laboratory trials

Protection against corrosion

Optimisation of the cathodic protection can be assessed by computation and laboratory trials.

The result consists on anodes located on strategic points of the structure. "Active" anodes have also been developed assigning given levels of electrical current.


PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy



Ifremer

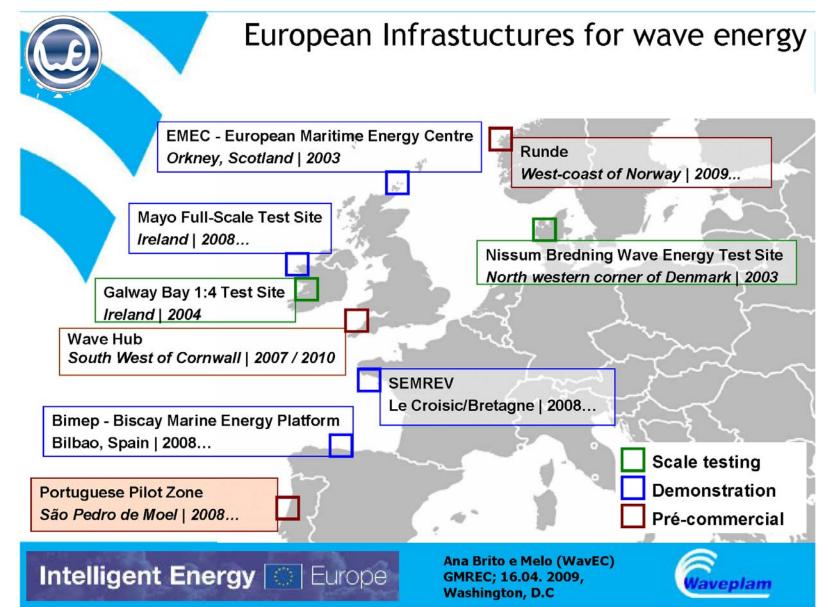
Laboratory trials

Bio-fouling From the comprehension of bio-film adhesion mechanisms to antifouling methods

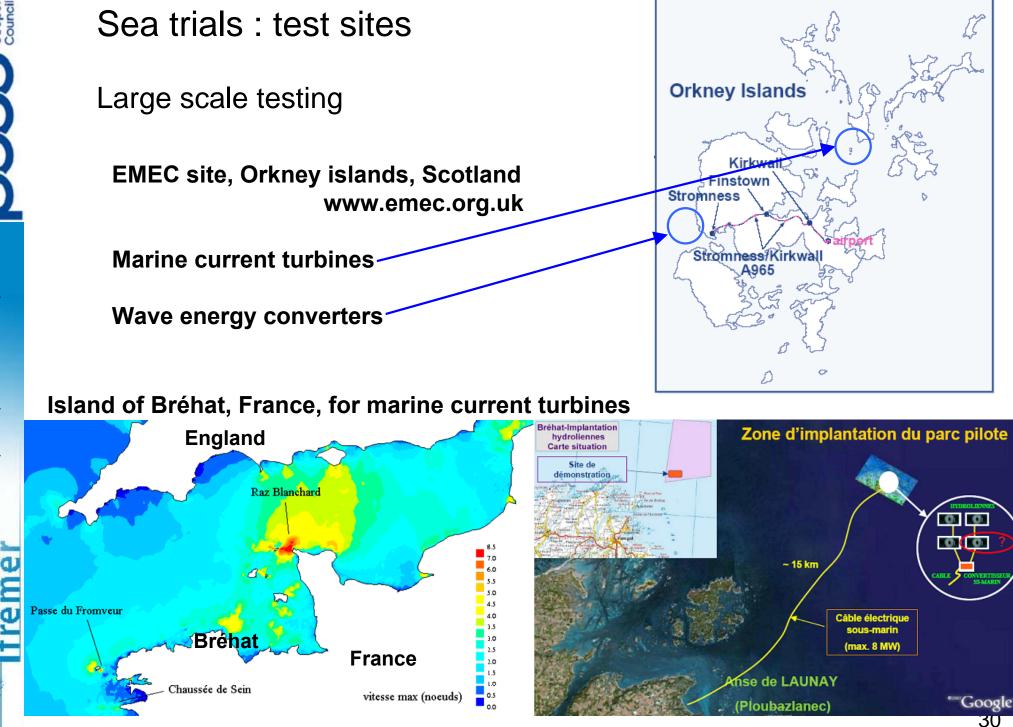
Marine bacteria embedded in their exo-polymeric production

GDR Bio-films Région Bretagne - Europe

Unprotected port-hole


Protected port-hole

ifremer

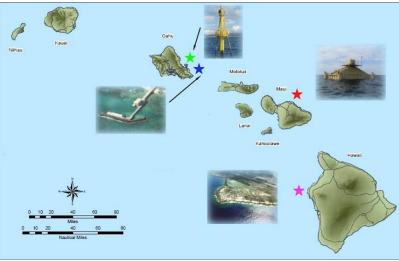

Sea trials : test sites

Large scale testing

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

Large scale to medium scale testing


Hawaii National Marine Renewable Energy Center hinmrec.hnei.hawaii.edu/nmrec-test-sites/

Maui: Establish and maintain a testing site for commercial size wave power systems;

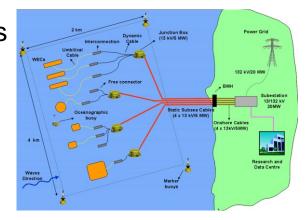
Kaneohe (KMCBH): Expand existing facilities to incorporate a wave-hub providing berthing for as many as four wave energy conversion devices in the 300 to 500 KW range;

Makapu'u: Establish and maintain a testing site for small wave power systems; and, conduct research on corrosion and bio-corrosion of innovative materials;

NELHA: Establish and maintain a testing site for OTEC system components.

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

fremer

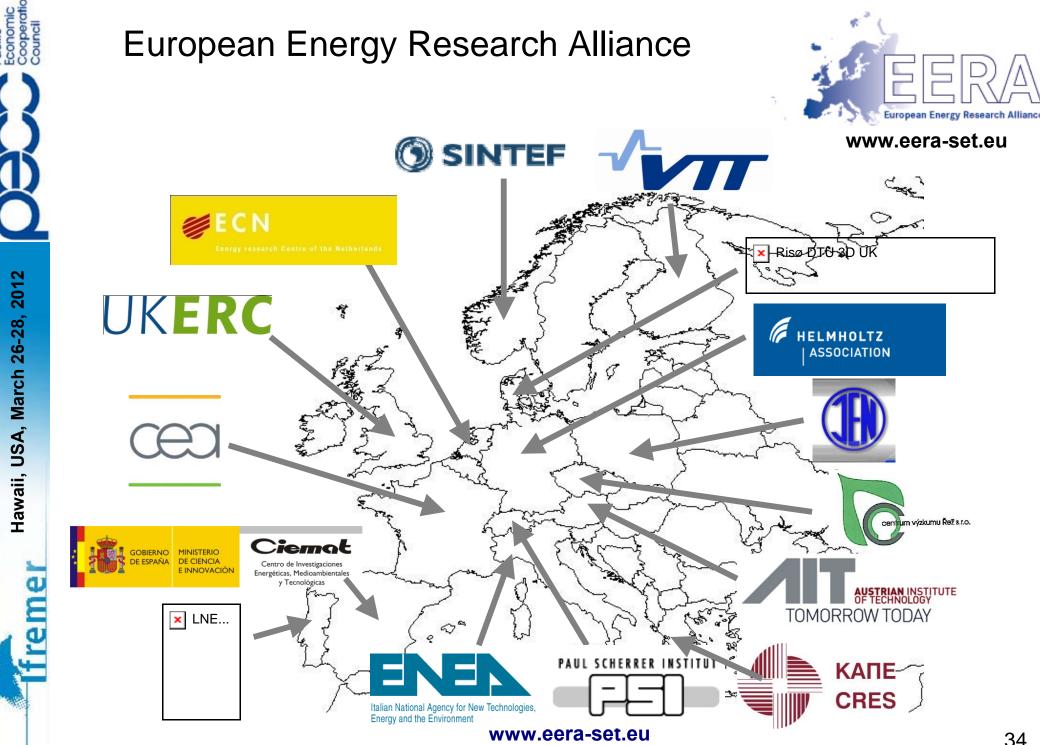


Ifremer

European project MaRINET www.fp7-marinet.eu

Marine Renewables Infrastructure Network for Energy Technologies

- Coordinated by HMRC
- Consortium of 28 Partners offering 42 Infrastructures
- Wave, Tidal and Offshore Wind
- Systems and components (eg PTO)
- All scales of facilities from model testing to full scale
- Infrastructure Access cost will be paid for by EU to the User (eg a developer)



PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

nic ration	Scale	Structural/Hydr	odynamics					
Economic Cooperation Council		Wave/Wind	Tidal/Wind	Electrical/PTO/ components	Environmental / Databases			
COEO	Small Lab	 AAU HMRC – wind wave Edin – small wave QUB – shallow sea water wave tank CRIACIV – small boundary layer wind tunnel 	 Strat – tidal towing tank RISOE – Current flume (with carriage) Uni Stutt – Laminar wind tunnel 	 Fh IWES HMRC Robotiker – small rotary rig SINTEF – Grid integration /simulation Uni Stutt – Low head turbine test rig 	N/A			
emer Hawaii, USA, March 26-28, 2012	Large Lab	 Nantes - wind wave IFREMER - deep sea water basin NaReC - wave flume (marine test site) LUH - FZK - Large wave flume in Hydralab proposal CNR-INSEAN - long wave flume with towing 	 IFREMER – recirculation channel with waves CNR-INSEAN – Recirculation channel hi flow hi volume 	 NaREC – grid integ. and 3MW rotary rig IRFEMER – materials environmental testing RISOE – Power test lab 30MW offshore Wind 	N/A			
	Small Site	 AAU Nissum SEI OEDU - Galway Bay test site 	 QUB – Strangford Tidal site T.T Centre Neth 	 UNEXE – moorings EVE - Mutriku 	 SEI MI – wave & tidal currents site data AAU Nissum 			
	Large Site	 EVE – Biscay Marine Platform SEI OEDU - Belmullet test site EMEC 	o EMEC	 Fh IWES Wavec - Pico plant Azores 	 QUB - Strangford Data EMEC RISOE - Mobile offshore wind measuring RISOE - Offshore Wind Database ECNeth - Offshore onvironmental 			
Lftr		MaRINET			 environmental database Uni Stutt – Offshore nacelle LiDAR UoP – HF Radar for offshore wave/ current 			

Pacific

freme

European Energy Research Alliance

EERA objectives:

www.eera-set.eu

- Accelerate the development of new energy technologies
- Integration of excellent but dispersed research capacities across the EU
- Strengthen Europe's capacity to initiate and execute large pre-competitive programmes
- Develop links and sustained partnerships with industry to strengthen the interplay between research outcomes and innovation
- Develop training, education and outreach activities

6. Socio-economic Impact- UK

JP Participants: UK (SuperGen), Spain (Technalia), Portugal (Wavec), France (IFREMER) Italy (ENEA/University of Bologna), Ireland (HMRC), Norway (SINTEF/MARINTEK), Germany (Fraunhofer IWES)

PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy

www.eera-set.eu

fremer

European Energy Research Alliance

Joint Programme on Wind Energy JP coordination: Risø DTU

www.eera-set.eu

Joint Programme Topics and priorities

- 1. Wind Conditions. Coordinated by Risø DTU, Denmark
- 2. Aerodynamics. Coordinated by ECN, The Netherlands
- 3. Offshore Wind Energy. Coordinated by SINTEF, Norway
- 4. Grid Integration. Coordinated by FhG IWES, Germany
- 5. Research Infrastructures. Coordinated by CENER, Spain

JP participants: CENER / CIEMAT (Spain), CRES (Greece), ECN (Netherlands), FhG IWES (Germany), LNEG / University of Porto (Portugal), Risø DTU (Denmark), SINTEF (Norway), VTT (Finland) and the University of Strathclyde (UK)

fremer

Mechanical Marine Renewable Energy Technological barriers

Construction of large scale and fine mesh metocean database

Development of numerical tools: seakeeping, energy conversion

Design of mooring systems

Materials: reliability, fatigue, corrosion, bio-fouling, life cycle

Operations at sea: deployment, inspection, maintenance, reparation, dismantling

Connexion to the grid: underwater connectors, umbilicals

Energy storage: batteries, hydraulic, hydrogen?

Evolution of standards: classification society criteria

Industry process: use of existing infrastructures and skills, upgrading

fremer

Mechanical Marine Renewable Energy Multidisciplinary field for research and development

Marine renewable energy conversion benefit from acquired knowledge in the fields of marine technology, ocean engineering, oil and gas industry, electrical engineering.

Both academic and technical disciplines are involved in the design process of marine renewable energy converters :

- Physical oceanography, meteorology
- Fluid mechanics and hydrodynamics
- Materials and structures, chemistry
- Electrical engineering
- Thermodynamics
- Geotechnics
- Acoustics

Ifremer

Thank you for your attention

Marc.Le.Boulluec@ifremer.fr