

Harnessing the Ocean's Energy in the Pacific Region

Dr. John Huckerby International Relations

Aotearoa Wave and Tidal Energy Association

Who is AWATEA and the Ocean Energy Systems Implementing Agreement?

Aotearoa Wave and Tidal Energy Association (AWATEA)

- Incorporated in April 2006
- Currently 56 Corporate, Professional, Non-profit and Individual members
- Promotes the uptake of marine energy in NZ

Dr. John Huckerby

- Founder and first Executive Officer of AWATEA
- Current Chairman of and NZ's representative to IEA's Ocean Energy Systems Executive (OES-IA) – www.iea-oceans.org
- NZ representative to IEC's Technical Committee 114, establishing electrical standards for marine energy converters – <u>www.iec.ch</u>
- Lead Author of the IPCC's Special Report on Renewable Energy Sources and Climate Change Mitigation – <u>www.ipcc.org</u>

21st Century New Zealand

94%

15,200 km coastline 4th largest country in the world...

<u>MANNAMANA</u>

- Marine biomass and future offshore wind energy
- Products include electricity (AC & DC), hydrogen, water, heat, biofuels
- 16 PECC members have active involvement in marine energy

Harnessing Ocean Energy

Resources

- Waves
- Tidal rise and fall
- Tidal and ocean currents
- Ocean thermal energy
- Salinity gradients
- Marine biota (for biofuels)
- Technologies
 - R & D
 - Deployments
- Projects
- Government Support
- Financing
- Competitively priced outputs
 - Electricity
 - Potable water
 - Hydrogen
 - Heat
 - Biofuels

Mark Hadfield, NIWA, 2009

Tidal Energy

Source: NIWA, 2009

Eling Mill, Southampton Milling flour for 900 years

New Zealand's tides Unused for millennia

Global Distribution of Wave Power

Source: Cornett, A. 2008. "A global wave energy resource assessment", ISOPE Conference 2008.

Ocean Thermal Energy Conversion

• OTEC resource covers an area exceeding 100 million km² across tropical oceans

- Economic feasibility: requires minimum differential temperatures of 15° between warm surface seawater and deep cold seawater; warm surface seawater is between 25 – 29°; deep cold seawater remains stable at 4 – 5°; 20° difference in temperature between the two is potentially viable
- Favourable OTEC regions are for the most part far offshore from any land (best sites: tropical locations with steep bathymetries)
- OTEC produces stable baseload power; good for security of supply

Osmotic Power Potential: Key indicators

- Osmotic Power potential requires availability of both saline and fresh water
- Major river estuaries are thus key potential sites
- Energy potential from osmotic power depends on freshwater flow:

Statkraft's Osmotic Power Prototype, Oslo Operational since October 2009

River	Average flow, m3/s	Power Production, GWh
Small local stream	10	88
Namsen (Norway)	290	2560
Rhine (Germany)	2200	19520
Mississippi (USA)	18000	160000

Source: UN Atlas of the Oceans

Wave Energy Conversion Australasian Devices

Oceanlinx OWC, Port Kembla, Australia, 2007

WET-NZ Point Absorber, Christchurch, December 2009

China: 40 kW Tidal Power Plant "Wanxiang-II"

- This experimental plant has two VAHT under water and rests on seabed of a strait of Daishan, Zhejiang Province.
- Capacity: 40kW; size: 7.6 x 7.6 x 5 m,; weight in air: 60 tonnes

Korea: Tidal Energy Barrages and Turbines

Sihwa Barrage - 254 MW

- SE of Seoul
- Retrofitted on existing barrage
- Built with CDM support
- Nearing completion operational in 2010
- Two more >250 barrages planned

Woolmoldog – 1 MW tidal prototype

- 100 kW test facility 2003
- 1 MW device installed in 2009
- Max current speed 5.5 m/sec!

Wave Energy Conversion Hawaii

COURTESY PHOTO A plan announced yesterday would place three wave energy platforms, similar to this one in Australian waters, off the coast of Maul.

- OPT has been testing PowerBuoys for the US Navy at Kaneohe for more than 10 years
- Oceanlinx proposes to deploy three devices offshore at Pauwela Point, Maui (2.7 MW)
- US DoE has nominated Hawaii as a Marine Energy Testing Centre and there are a number of DoE-funded research projects on Ocean Thermal Energy Conversion in progress

Canada's Potential Offshore Wave Energy Resources

 Pacific Ocean (200 mile limit)
 50.7 kW/m
 54,300 MW/yr

 Atlantic Ocean (200 mile limit)
 34.5 kW/m
 161,955 MW/yr

- Canada's Electricity Consumption about 70,000 MW/annum
- Nearshore wave energy in the Atlantic is considerably smaller than in the offshore

Canada Potential Tidal Current Sites (by Province)

Province	Potential Tidal Current Energy (MW)	Number of Sites (-)	Average Size (MW)
Northwest	35	4	9
Territories			
British Columbia	4,015	89	45
Quebec	4,288	16	268
Nunavut	30,567	34	899
New Brunswick	636	14	45
PEI	33	4	8
Nova Scotia	2,122	15	141
Newfoundland	544	15	36
TOTAL	42,240	191	221

Japan: OTEC Resource and Test Facility

Temperature Diff. (Surface – WD 1,000m)

- Most of northern Japan too cold
- Areas of S. Japan have potential for OTEC

SAGA University – 30 kW Pilot OTEC

• Ammonia – water system

Fresh Water from Ocean Energy

- 'Free' renewable energy for desalination
- Zero greenhouse gas emissions
- Can be located up to 5 km offshore
- Located close and scaled to market demand
- Minimal requirement for pipelines ideal for remote sites
- Residual brine disposed at site
- Small footprint due to ocean energy density
- Substitute power production in the rainy season
- Projects in Australia, US, Mexico and India

Barge: Desalination 1 M I/d Capacity Plant

Role of Governments

• Supportive policies and strategies

- Targets: installed capacity and generation
- Resource allocation and permitting regimes
- Integration of onshore and marine estate regulation
- Infrastructure support (OE centres and testing facilities)
- Standards and protocols
- 'First nation' considerations

Funding/co-funding – from model to money

- R & D grants (most countries)
- Deployment capital grants (UK and NZ)
- Feed-in tariffs & renewables obligation certificates (NW Europe)
- Competitive prizes (Scotland)

Climate change & sustainability

- Emissions reductions & trading regimes
- Legislative promotion of renewables

<u>MANNANNAN</u>

International Connections

• IEA: Ocean Energy Systems

- Intergovernmental organization working on ocean energy
- Canada has been long-standing member and past Chair
- Annex IV: Environmental Impacts of Marine Energy Converters
- <u>www.iea.oceans.org</u>: Annex reports, annual reports, newsletters

• IEC Technical Committee 114

- International standards setting agency for electrical devices
- Has established standards for wind turbines
- TC114 proposed in August 2007 to establish standards for marine energy converters
- Ms. Melanie Nadeau of Natural Resources Canada is Chair
- Canada, US, UK and NZ leading tech. specification work groups

Ocean Energy Systems IA

Members

Membership is Governmental only, membership is by invitation from IEA Member Governments may represent themselves or nominate other parties to nominate them

Representatives

Member government departments (US, UK), government agencies (Canada, Ireland), national energy agencies (Spain, Sweden) industry associations (EU, NZ), device/project developers (Australia, Norway, Italy), research organizations (Portugal, Denmark, Germany) and universities (Japan, Belgium, Mexico) and the European Commission

Key Strengths

Collaborative efforts between countries, pooled capital, resources and effort Wide reach and range over issues; transfer of experience and knowledge Range of representatives means wide range of interests, desires and directions

IEA:OES-IA Mission & Vision

Vision

To realise, by 2020, the use of cost-competitive, environmentally sound ocean energy on a sustainable basis to provide a significant contribution to meeting future energy demands

Mission

To facilitate and co-ordinate ocean energy research, development and demonstration through international co-operation and information exchange, leading to the deployment and commercialisation of sustainable, efficient, reliable, costcompetitive and environmentally sound ocean energy technologies

IEA:OES-IA Objectives

5 Year Strategic Plan (2007 – 2011)

- 1. To actively encourage and support the development of networks of participants involved in R, D & D, prototype testing and deployment, policy development and facilitate networking opportunities
- 2. To promote and facilitate collaborative research, development, and demonstration to identify and address barriers to, and opportunities for, the development and deployment of ocean energy technologies
- 3. To promote the harmonization of standards, methodologies, terminologies, and procedures, where such harmonization will facilitate the development of ocean energy
- 4. To become a trusted source of objective information and be effective in disseminating such information to ocean energy stakeholders, policymakers and the public
- 5. To promote policies and procedures consistent with sustainable development

Ocean Energy Themes

Recent and Present Trends

- 1. Early R & D, deployments and supportive policies Initial interest/investment in Portugal, UK, Denmark and Ireland More recent developments in N. America and Australasia Feed-in tariffs and marine supply obligations in most advanced countries
- 2. Proliferation of Testing Centres EMEC operational in 2004 More than 11 testing centres under development
- 3. Utility-scale Investors & GW-scale Investments Voith Hydro and RWE Innogy – JV for tidal energy Aquamarine Power and Airtricity – 1 GW proposed
- Expectations Met and Promised Delivered? Early developments have promised much...
 Need for extended deployments to demonstrate capacity factors, O & M costs and commerciality
 RAB report (2008) and Saltire Prize

Harnessing Ocean Energy

Resources

- Resource measurement
- Continuous mapping
- International standards

Projects

- "Devices in the water"
- Deployment technologies

Government Support

- R & D & Deployment -> commercialization
- Gov't policies to promote renewables
- Policies and regulation

• Financing

- Willing investors
- Niche applications

- Wave Technologies
 - Point absorbers
 - Attenuators
 - OWCs

• Tidal/ocean Technologies

- HA tidal turbines
- VA tidal turbines
- Fences
- Tidal Rise and Fall
 - Barrages
 - Impoundments
- Ocean Thermal Energy
- Salinity gradients
- Marine biomass

If you have been, thank you for listening!

For more on the IEA's Ocean Renewable Energy Systems Implementing Agreement, to go: www.iea-oceans.org

> or on New Zealand's potential, go to: www.awatea.org.nz

Harnessing the Ocean's Energy in the Pacific Region

Dr. John Huckerby International Relations Aotearoa Wave and Tidal Energy Association

