Conditions for Better use of Water in Agriculture and the Pricing Issue

Basil Sharp

The Management Challenge

[A] Uses:

non-consumptive consumptive

[B] Non-uses:

Habitat

Ecosystem

Non-consumptive use

Consumptive use

What is the Problem?

Competing uses → Competing values

- Energy producers
- Farmers
- Salmon anglers
- Streambed preservation
- Wild life habitat

Market valued & non-market valued

TEV Framework

Total Economic Value Market & Non-market Values

- Basic Idea
 - (A) Use of water resource
 - Input into production process
 - → value (use value)
 - (B) Non-use
 - Maintain flows
 - → value (use & non-use values)
 - Economic efficiency seeks to balance (A) and (B)

Total Economic Value

Marginal Use Value

Marginal Non-Use Value

Quantity of Water

Condition #1

- Embed non-market values into water allocation and management plan
- Focus on mechanisms & processes that generate ongoing information on both market & non-market values
- Outcome:
 - Sustainable supply of water that meets community requirements, environmental goals and demands of water users

Two Approaches to Pricing

- Tradable rights: market price reveals value to users
- Administered price based on estimates of value using residual method:
 - Rent = total revenue *less* total variable costs *less* return to non-water fixed factors (e.g. owners equity) *less* any non-water rents (e.g. location)
 - Calculate average and marginal rent:
 - Average = \$total value/total use
 - Marginal = change in \$total value/change in total use

Are They Equivalent?

- Both create opportunity costs and signal scarcity
 - Work on different axes: price quantity
- But outcomes not equivalent:
 - Price may (probably will not) not deliver the desired environmental outcomes
 - Tradable rights, provided enforced, will deliver desired environmental outcomes and provide ongoing information on value
 - Information requirements not equivalent
 - Government revenue

Property Rights

- For decentralised coordination of production and consumption to work efficiently, in a society with diffused knowledge, individuals must have secure private property rights that are tradable at mutually agreed prices with relatively low costs of contracting.
- Little disagreement that stronger private property rights are more valuable than weaker private property rights.

Structure of Permits and Value

- Duration: time hold claim to benefits associated with use – maximum duration 35 years
 - Longer duration more valuable, return on investment e.g. water efficient technology
- Exclusivity: ability to appropriate the benefits associated with investment
 - Align profits with cost
- Transferability: move to higher valued use
 - Unleashes dynamic
- Transformability: create derivative right e.g. lease
 - Improves flexibility, manage risk

Value of water permits

Transferability

Condition #2

- Robust system of rights governing use of water that is integrated with "environmental values"
- Governance must recognise uncertainty
 - Stochastic nature of water supply
 - Community needs
 - User demand
- Definition of use right e.g. share system
- Outcome:
 - Agricultural users can better align their management & investment decisions with expected returns

Water Economics

- Pricing water services
 - Key principle in sustainable development policy (e.g. OECD, 2002)
- Approach in NZ:
 - Resource Management Act: provides basis for administrative systems at regional level
 - Not priced
 - First-come-first-served
 - Rights not transferable
 - History of little monitoring
 - Total abstraction limited by minimum flow

Property Rights in NZ

- Water permit:
 - Water vested in Crown
 - Maximum 35 years, typically 10-15 years
 - Can't transfer outside catchment
 - Conditional aspects:
 - Hierarchies of use
 - May have freedom when and how to use
 - May transfer to subsequent owner of land
 - May not be able to exercise right

Should we be Concerned About this Allocation Process?

- Most definitely yes!
- Why?
 - Race to the pump house
 - Water "demand" > supply
 - Existing uses unlikely to be efficient
 - Substitution of natural capital for manufactured capital
 - Dynamic investment incentives

Tradable Rights: A Feasible Alternative

Tradable rights:

- Establish sustainable target e.g. minimum flow
- Define rights e.g. water permit as a % of annual quantity
- Set initial entitlements:
 - existing use
 - could auction
- Establish rules governing transfer

Governance: International Practice

- Water resource development → water allocation and water quality
- Old development model: centralised decision-making, administrative regulation
- New model: decentralised decision-making, economic instruments, stakeholder participation

Australia

- Government: federation, financial levers, public ownership, state management
- Policy: in transition, economic substituting for administrative approach
- Entitlements: 10 years, volumetric, security classes, cost recovery, interstate trade
- Outcomes: toward high value uses
- Challenges: environment, native title

Canada

- Government: federation, public ownership, provinces manage
- Policy: transition to economic basis for cost-recovery
- Entitlements: administered
- Outcomes: lack investment in infrastructure, low level conservation
- Challenges: conservation

Chile

- Government: federation, public ownership, role of NGOs in management and pricing
- Policy: advanced rights based, fine tuning
- Entitlements: granted free, proportional volumetric
- Outcomes: basis for rural prosperity, net gains from trade
- Challenges: non-irrigation sector, traditional rights, spatial aspects

Israel

- Government: unitary, public owners, centralised,
 SOEs
- Policy: transition to strengthen pricing, devolution
- Entitlements: administered, hierarchical use rights, volumetric
- Outcomes: low wastage, high productivity
- Challenges: water quality, transboundary issues

USA

- Government: federal, financial levers, states own and manage
- Policy: state planning, strengthen pricing
- Entitlements: often spun-off federal projects, temporary/permanent transfers, state approval of transfers
- Outcomes: to high value uses, cross sector transfers
- Challenges: environment, equity

Gradient of Structures

Limited cost recovery

Administered pricing (cost-recovery)
No rental pricing

Market based instruments

Summary

- Policy:
 - Transition to economic instruments
 - Resource pricing/tradable rights
 - Devolution, NGO/stakeholder involvement
- Entitlements:
 - Volumetric, in some cases hierarchical
 - Tradable, tort "v" agency approval
- Outcomes
 - Basis for rural prosperity
 - Low value use high value use
- Future Challenges
 - Environment
 - Traditional rights
 - Non-irrigation sector