MONASH University



#### **Dr Gavin M Mudd** Environmental Engineering

# Groundwater, Mining and Sustainability in the Tropics : Some Research Case Studies

#### PECC Bora Bora Water Resources Seminar 13 November 2007

iswr.eng.monash.edu.au

# Sustainability in 21<sup>st</sup> Century ...

- TWO KEY CHALLENGES :
  - ENERGY WATER
- Energy is closely linked to climate change
- Water is multi-faceted : quantity, quality, consumption ...
- Demonstrating long-term sustainability is the key challenge



#### **Presentation Overview**

- Sustainability quick definition
- Groundwater in the Tropics
  - strong seasonality, water balance, recharge
  - Case Study : Ranger uranium mine, NT
- Mining in the Tropics
  - environmental considerations
  - Case Study : Rum Jungle uranium project, NT
- Groundwater and Climate Relationships
  - analysis techniques, climate change issues

Summary

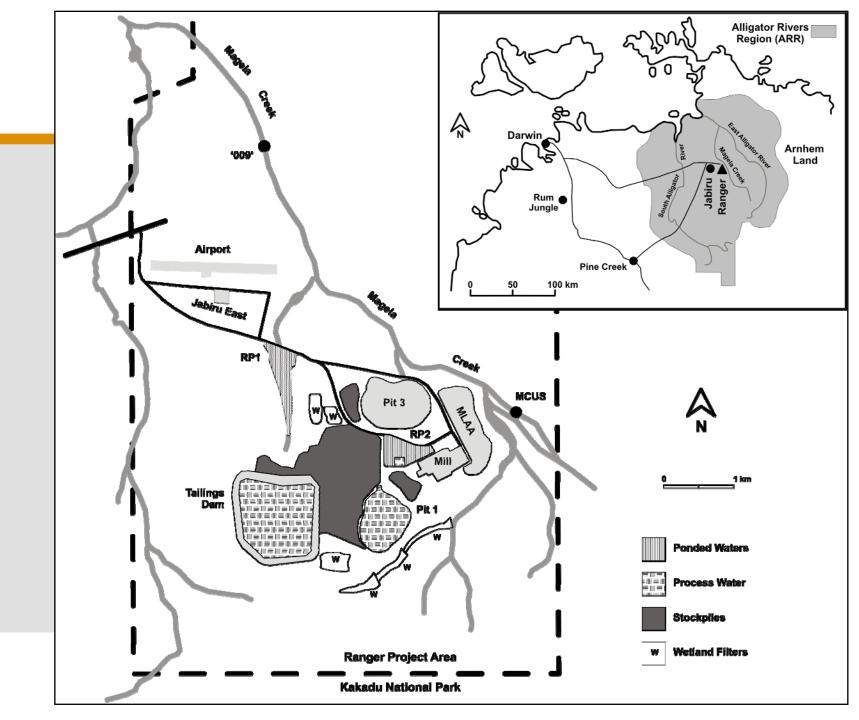


### 'Sustainability'

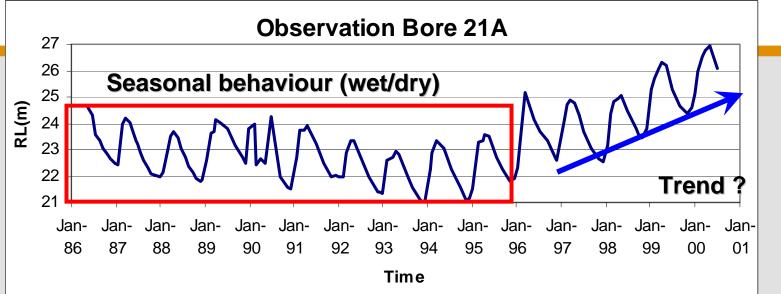
#### • Brundtland Commission (WCED) :

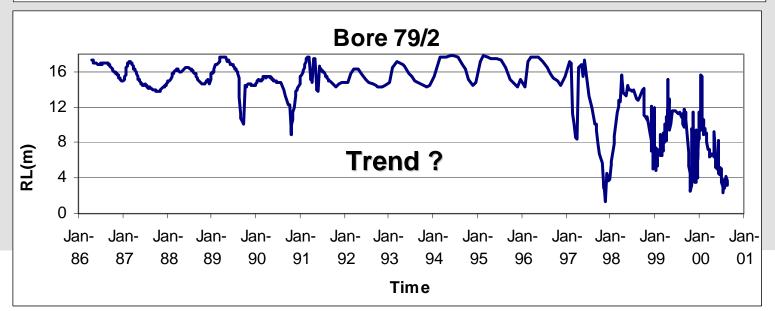
*"to meet the needs of the present without compromising the ability of future generations to meet their needs"* 

- In general, taken to mean ongoing resource availability, healthy environment and vibrant, strong communities
- In practice, this is hard to demonstrate, especially quantify
- Tropical Islands : imperative




### **Groundwater in the Tropics**


- Groundwater resources in tropics are very different to temperate and arid regions
- Strong seasonal climate drives seasonal recharge-discharge processes
- Groundwater resources are dynamic responsive to climate or other drivers
- In northern Australia, groundwater behaviour can be interpreted as 'one-dimensional' : that is, mostly vertical through recharge during the 'wet', evapotranspiration in the 'dry'




Ranger Uranium Project, NT



#### **Ranger Uranium Mine, NT**





## **Mining in the Tropics**

- Mining is a major industry across the tropics
- Often adjacent to sensitive environments and/or concerned communities
  - need for sound "sustainability" management
- In northern Australia, major issues include location, mineral commodity, land use, and indigenous land rights
- Major mining projects include :
  - uranium, lead-zinc-silver, bauxite, iron ore, gold , ...



### **Tropical Minesite Water Management**

- In general, mines in tropical Australia are not allowed to discharge minesite waters to adjacent rivers : preference is for a 'zero-release' water management system
- Water quantity is important but often the most critical issue is water quality
- There remains a significant legacy of abandoned or poorly rehabilitated mines
- Significant debate is emerging over competition between mining / agriculture





## **Ranger Water Quality Regulation**

|                                                   | pН                            | EC                | Mg                                  | $SO_4$                             | Mn                             | U                                   | <sup>226</sup> Ra |  |
|---------------------------------------------------|-------------------------------|-------------------|-------------------------------------|------------------------------------|--------------------------------|-------------------------------------|-------------------|--|
| ANZECC Level                                      | -                             | µS/cm             | mg/L                                | mg/L                               | μg/L                           | μg/L                                | mBq/L             |  |
| Focus                                             | 5.9-6.5 <sup>[a]</sup>        | 21 <sup>[b]</sup> | use EC [c]                          | use EC [c]                         | 7 <sup>[d]</sup>               | 0.3 <sup>[e]</sup>                  | not set           |  |
| Action                                            | 5.6-6.7 <sup>[a]</sup>        | 30 <sup>[b]</sup> | use EC [c]                          | use EC [c]                         | 11 <sup>[d]</sup>              | 0.9 <sup>[e]</sup>                  | not set           |  |
| Guideline / Limit                                 | 5.0-6.9 <sup>[a]</sup>        | 43 <sup>[b]</sup> | use EC [c]                          | use EC [c]                         | 26 <sup>[d]</sup>              | 6 <sup>[e]</sup>                    | 10 difference [f] |  |
| Retention Pond 1<br>(1980 to 1999) <sup>[g]</sup> | 6.3-7.7                       | 25-500            | 2.3-28                              | 1-100                              | <2-37                          | 0.2-10                              | no data           |  |
| Retention Pond 2<br>(Sept. 2001 to Aug. 2004)     | 6.0-9.3                       | 1,030-<br>1,785   | 130-250                             | 500-1,100                          | 10-1,600                       | 2,750-14,800                        | no data           |  |
| Process Water<br>(Nov. 1989 to Aug. 2000)         | 3.9-6.7                       | 8,900-<br>40,000  | 2,400-10000                         | 6,700-<br>61,000                   | 710,000-<br>4,200,000          | 420-3,900                           | no data           |  |
| OSS Pre-ANZECC<br>Concentrations                  | 5.5-6.5 mean<br>(statistical) | not set           | 20 <sup>limit</sup><br>(ecological) | 200 <sup>limit</sup><br>(drinking) | 50 <sup>limit</sup><br>(human) | 10 <sup>limit</sup><br>(toxicology) | not set           |  |
| NTDME Pre-ANZECC<br>Maximum Allowable Additions   | not set                       | not set           | 1.0                                 | 19                                 | 24                             | 3.8                                 | not set           |  |
| Pre-ANZECC Loads                                  | not set                       | not set           | not set                             | not set                            | 6 t/yr                         | ~3.5 t/yr [h]                       | 13 GBq/year       |  |

[a] A range is specified for pH to reflect natural variation in water quality processes.

[b] This is a combination of statistical analyses of MCUS and 009 data and is intended to provide a compromise between existing water quality impacts, the practicality of dilution v the desire to work towards the express wishes of the Mirarr traditional owners for no change in water quality.

[c] Due to the Mg-SO4 signature at 009, and the results emerging from research into the ecotoxicological effects of the Ca:Mg ratio, EC is used as a surrogate for Mg and SO4.

[d] Based on flow in the middle of the wet season due to the seasonal behaviour of Mn in the Magela Creek catchment.

[e] As discussed in the text, the initial limit trigger of 5.5 µg/L was rounded to one significant figure ('6' µg/L) for regulatory simplicity.

[f] Radium standards are primarily considered with respect to human health and radiological exposure assessments, especially through uptake of 226 Ra by species favoured as 'bush tuc

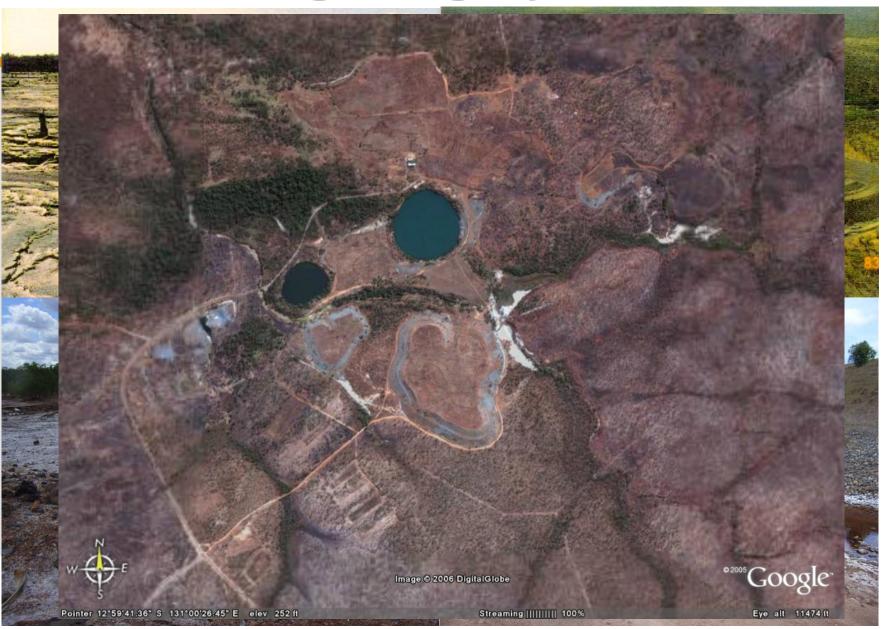
[g] Years 1999-2004 are excluded due to elevated concentrations caused by runoff from the northern tailings dam wall stockpiles. Note that in the long-term EC, Mg and SO4 are gener

[h] Based on human health criteria from a total <sup>234</sup>U and <sup>238</sup>U activity of 88 GBq/year (pp 24) (OSS-AR, 1985) (ie. as specified in the Ranger Authorisation).

## **Rum Jungle : Water Quality**

- Heavy and lasting impacts on surface waters due to mainly acid mine drainage BUT
- Radionuclide loads (U, 226Ra) remain poorly quantified (despite U being highly soluble in acidic, oxidised geochemical environments)
- Groundwater polluted but not remediated during rehabilitation works – ongoing source of metals

Table 7. Finniss River water quality, downstream of Rum Jungle, 1992/93 wet season (µg/L) [13]

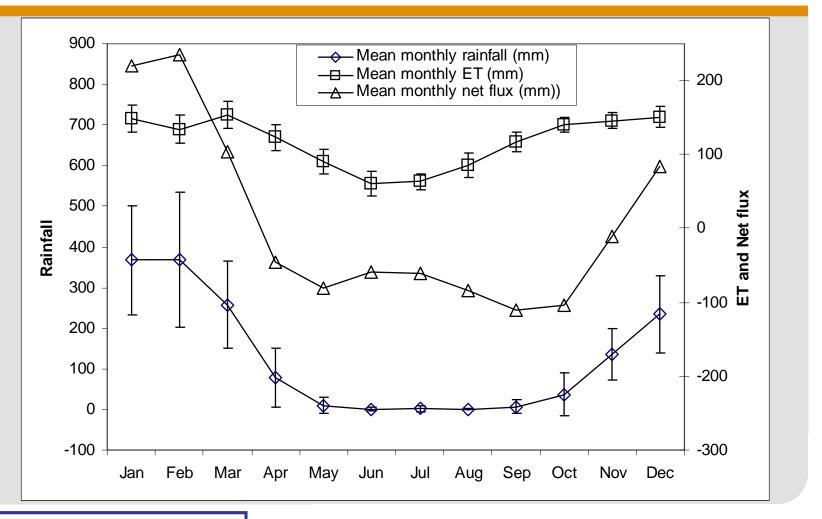

| (†mg/L) | Al † | Ca † | Fe <sup>†</sup> | As  | Ba  | Со  | Cr  | Cu    | Ni  | Pb  | Th   | U  |
|---------|------|------|-----------------|-----|-----|-----|-----|-------|-----|-----|------|----|
| Average | 3.6  | 9.9  | 1.71            | 4.1 | 37  | 176 | 5   | 485   | 169 | 76  | 3.3  | 33 |
| Minimum | 0.21 | 4.2  | 0.096           | 0.6 | 21  | 53  | 0.7 | 180   | 53  | 2   | 0.02 | 6  |
| Maximum | 9    | 29   | 14              | 41  | 120 | 480 | 33  | 1,100 | 430 | 880 | 26   | 63 |



#### The Rum Jungle Legacy ...

1970's

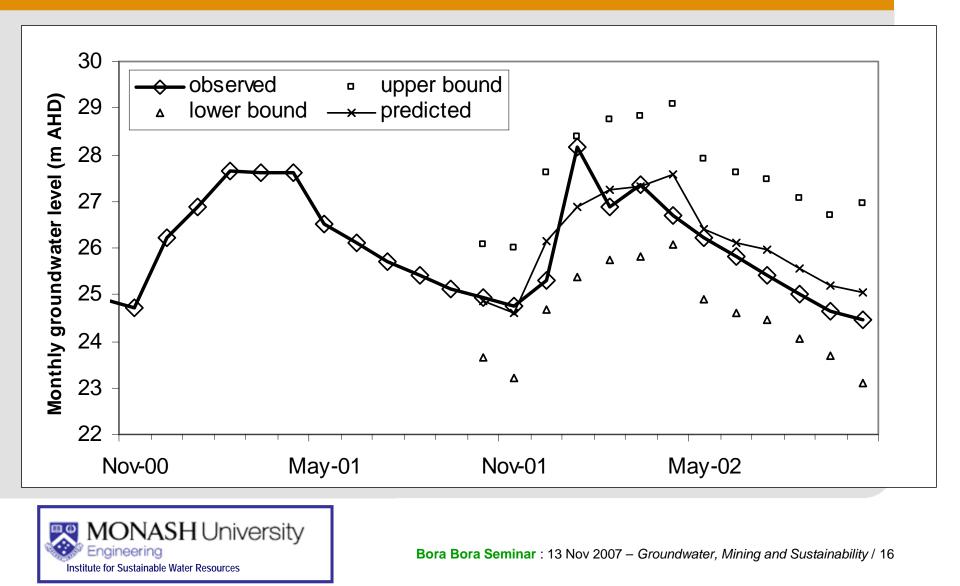
27 July 2007



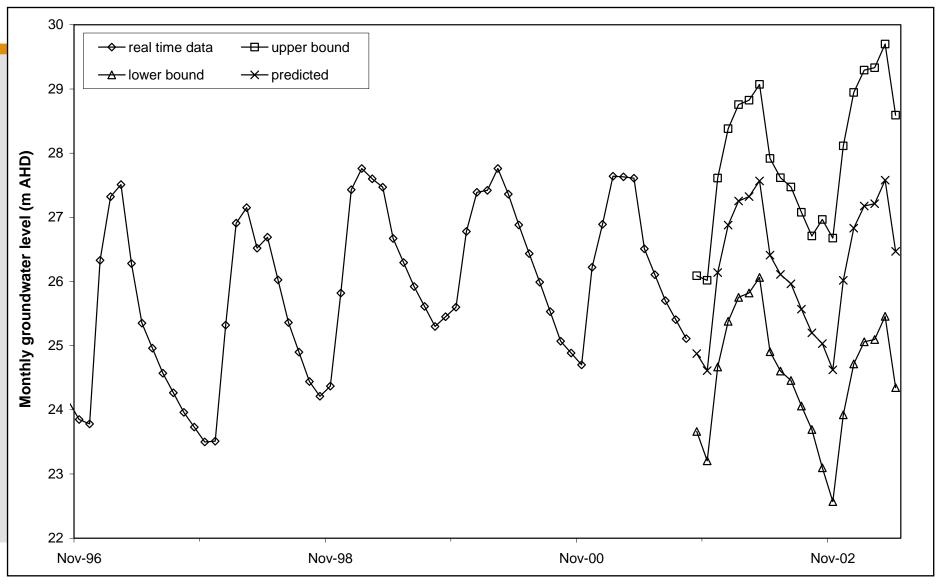

### **Groundwater-Climate Relationships**

- The strong seasonality of groundwater is clearly linked to climate : wet-dry seasons
- Climate change impacts are of real concern, especially for wetlands & mine rehabilitation
- Simple visual observation does not provide sufficient rigour in identifying the effects of above/below average wet seasons
- Time series statistical techniques are being adapted for the Ranger uranium project, combined with physical modelling ('SeepW')




#### **Groundwater-Climate #1**




MONASH University Engineering Institute for Sustainable Water Resources

Bora Bora Seminar : 13 Nov 2007 - Groundwater, Mining and Sustainability / 15

#### **Groundwater-Climate #2**



#### **Groundwater-Climate #3**



Bora Bora Seminar : 13 Nov 2007 - Groundwater, Mining and Sustainability / 17

#### Some Lessons So Far ...

- Regular and frequent monitoring is vital
- Looking for different techniques of analysis is critical – many options are available, need to discern the most viable
- Climate change is going to be a major concern into the future – especially since groundwater resources are strongly linked to climate-forcing conditions
- Major implications for mining and the environment

