
Impact of air pollutants from ships on coastal population

Young-Tae Chang Inha Fellow Professor Asia Pacific School of Logistics, Inha University, Incheon, Korea

CONTENTS

- Context
- GHG estimation at POI
- Reducing NG estimation at POI in ECA
- New model to assess human impact from transportation
- Human impact by shipping in POI

UNFCCC' 92 Kyoto Protocol' 97

Source: Dr. Jean-Paul Rodrigue, Dept. of Economics & Geography, Hofstra University.

Carbon Footprinting

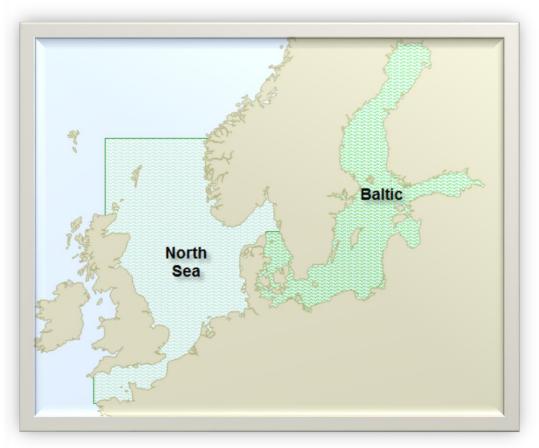
Mapping

Monitoring & Reduction

IMO Operational Measure Market Based Measure Emission Trading Scheme

Emission Control Area(ECA)?

- MARPOL Annex VI entered into force on 19 May 2005 and Regulations 14 and 18 define the method of controlling Sulphur Oxide (SO_x) emissions on a global basis and in defined protected areas called Sulphur Emission Control Areas (SECAs).
- The aim of the legislation is to reduce SO_x emissions from ships to reduce the acidification of the atmosphere and the resulting acid rain


Respiratory disease

Cardiovascular disease

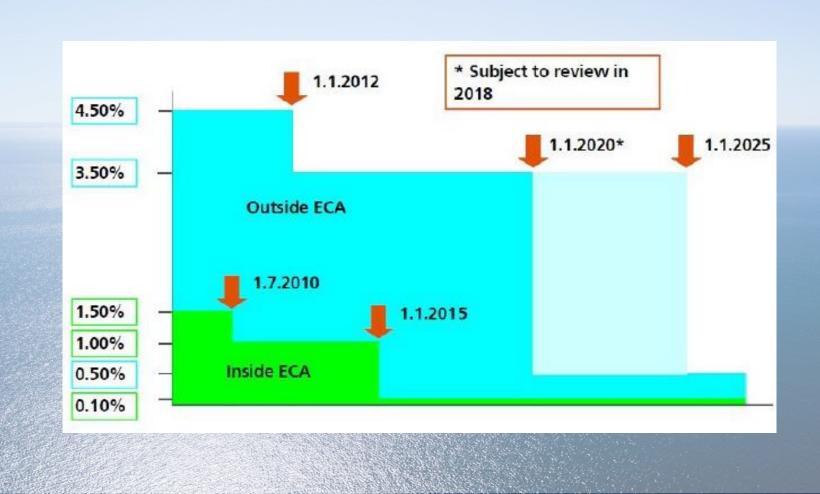
Asthma

ECA Areas in force to date

 Baltic Sea
 came into force on 19 May 2005

2. North Sea and English Channel- came into force on 11 August2007

ECA Areas in force to date



1.US East Coast- came into force on 1st August2012

2.US East Coast- came into force on 1st August2012

3.Hawaiian Islands- came into force on 1st August2012

INTERNATIONAL SHIP ENGINE & FUEL STANDARDS : MARPOL ANNEX VI

Transportation Research Part D 25 (2013) 1-4

Assessing greenhouse gas emissions from port vessel operations at the Port of Incheon

Young-Tae Chang*, Younghun Song, Younghoon Roh

Graduate School of Logistics, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea

ARTICLE INFO

Keywords: Greenhouse gas emissions Sea ports Vessel operations Bottom-up approach

ABSTRACT

This paper measures greenhouse gas emissions from port vessel operations by considering the case of Korea's Port of Incheon. It provides estimates of greenhouse gas emissions based on the type and the movement of a vessel from the moment of its arrival, to its docking, cargo handling, and departure. Taking a bottom-up approach based on individual vessels' characteristics and using data on vessels processed by the port in 2012 estimate emissions. The results indicate that the level of emissions is five times higher than that estimated through the top-down approach. Among various types of vessels, international car ferries are the heaviest emitters, followed by full container vessels and car carriers. A vessel's passage through lock gates and maneuver to approach the dock accounts for 96% of its emissions. Docking for cargo handling shows the lowest level of GHG emissions.

Port of Incheon (POI)

Data

Graduate School of Logistics, Inha Univ. Young-Tae Chang

- Port of Incheon (POI)
 - Incheon Port Authority(IPA)
 - 13,784 vessels
 - From Jan to Oct 2012
 - European Environmental Agency(EEA) 2009
 - Significant Ships 1996-2001
 - etc

Methodology

$$F_{ijk} = [MF_k \bullet (\frac{s_{1k}}{s_{0k}})^3 + AF_k] \bullet \frac{d_{ij}}{24s_{1k}}$$

where F_{ijk}: amount of consumed fuel by vessel k moving from i point to j point MF_k: daily fuel consumption of a vessel's main engine AF_k: daily fuel consumption of a vessel's auxiliary engine

s1k: vessel's operating speed (nm/hour)

s_{0k}: vessel's design speed (nm/hour)

d_{ij}: distance from *i* point to *j* point

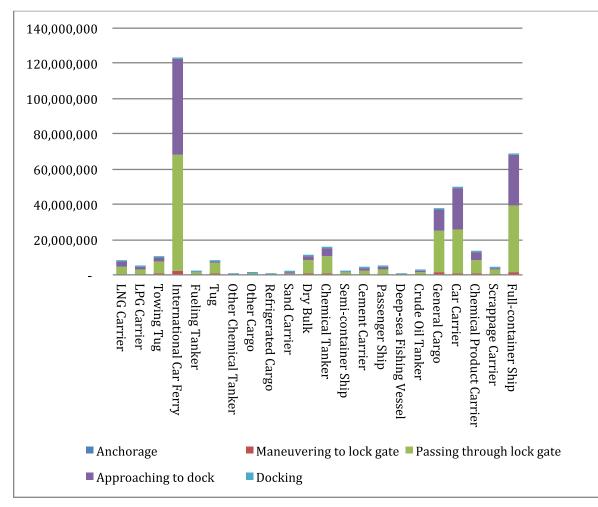


Figure 2. Estimation of CO₂ emissions by ship type and movement

Transportation Research Part D 28 (2014) 91–97

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Assessing noxious gases of vessel operations in a potential Emission Control Area

^a Craduate School of Logistics Inha University Inha Poad 100 Vonghuun dong Nam gu Inchaon 402 751 Penublic of Korea

Main Source – Internal combustion

- Soot

Carbon Monoxide(CO) Volatile Organic Compounds(VOC) Nitrogen Oxides(NOx) Particulate Matter(PM)

- Sulfur-rich fuels Carbon Dioxide(CO₂) Sulfur Dioxide(SO₂)

Methodology

$$E_{trip,k,p,g,f} = \sum_{m} (F_{g,f,m} \times EF_{p,g,f,m})$$

where, E_{trip}: emission over a complete trip (ton) of vessel k

 $F_{g,f,m}$: amount of fuel consumed by vessel k

EF: emission factor

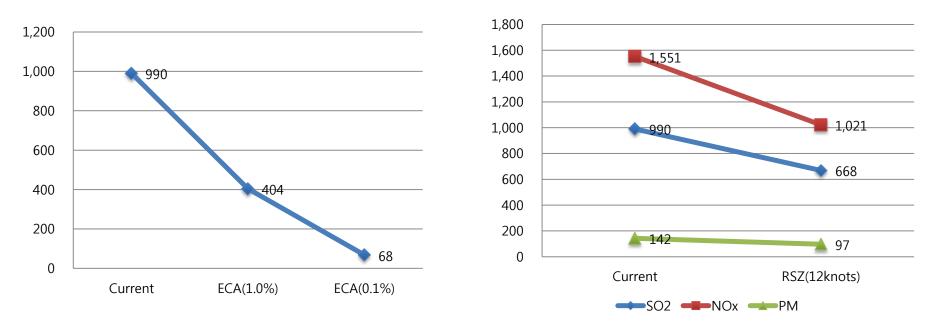
p: pollutant (NO_X, SO₂, PM)

f: fuel type (bunker fuel oil, marine diesel oil/marine gas oil, gasoline)

g: engine type (slow-, medium-, and high-speed diesel, gas turbine and steam turbine)

m: different phase of the trip (cruise, hotelling, maneuvering)

 Results


 <Reduction by ECA>

 1.0% or 0.1%(Sulphur content)

 Substruction Substruction

 Substruction

 Substruct

• Emission of SOX, NOX & PM from ships is critical on health of human population

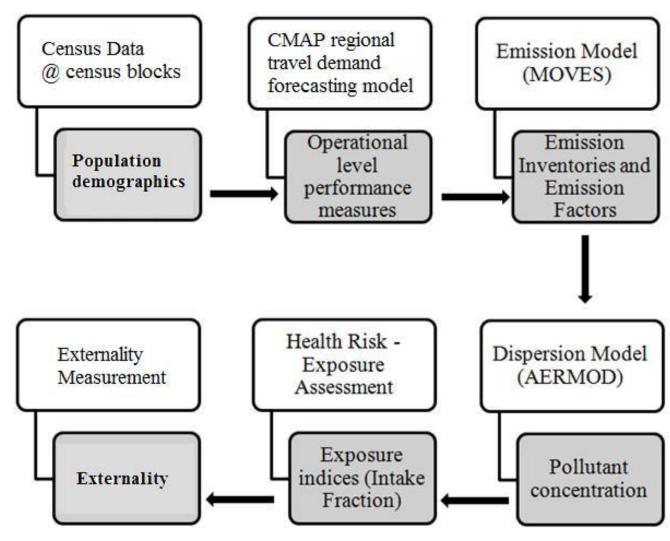
Conclusion

- No ECA has been designated yet in Asia
- Designating ECA can reduce the impact remarkably as shown in this study
- It is high time that Asian countries should consider ECA in their regions.

Estimating externality of population health exposure to near-road vehicular emissions

Suriya Vallamsundar

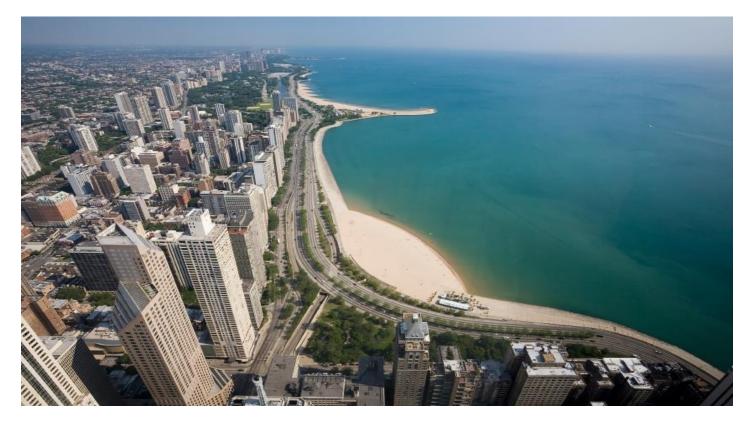
Environment and Air Quality Division, Texas A&M Transportation Institute, 9441 LBJ Freeway, Suite 103, Dallas, TX 75243, USA Email: s-vallamsundar@tti.tamu.edu


Jane Lin*

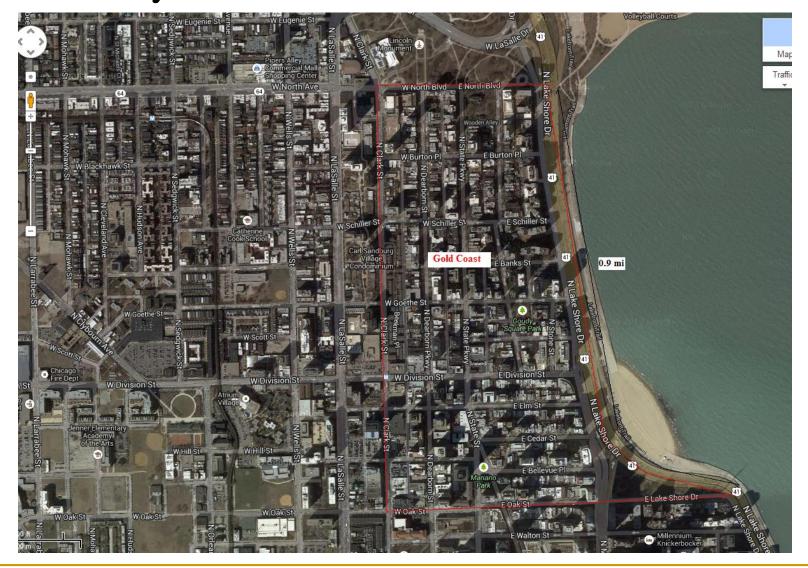
Department of Civil and Materials Engineering, and Institute for Environmental Science and Policy, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, IL 60607, USA Email: janelin@uic.edu *Corresponding author

Young-Tae Chang

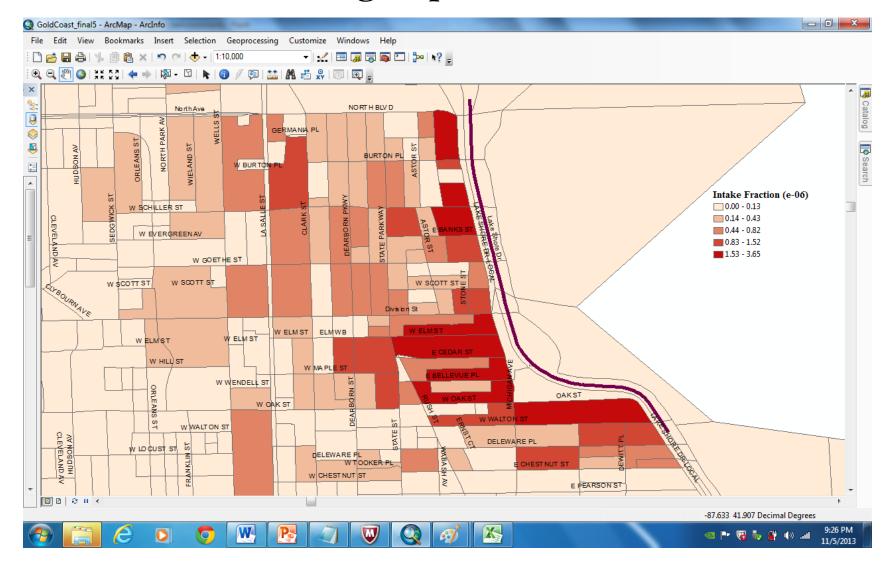
Graduate School of Logistics, Inha University, Incheon, Korea Email: ytchang@inha.ac.kr


Modeling Process

Case Study


- Gold Coast, Chicago
- Lakeshore Drive between North Ave and Oak Street
- Analysis year 2010
- For a typical day in January
- Extent of 1000m from Lakeshore Drive
- Particulate matter of size 2.5um
- 24 hour averaging period

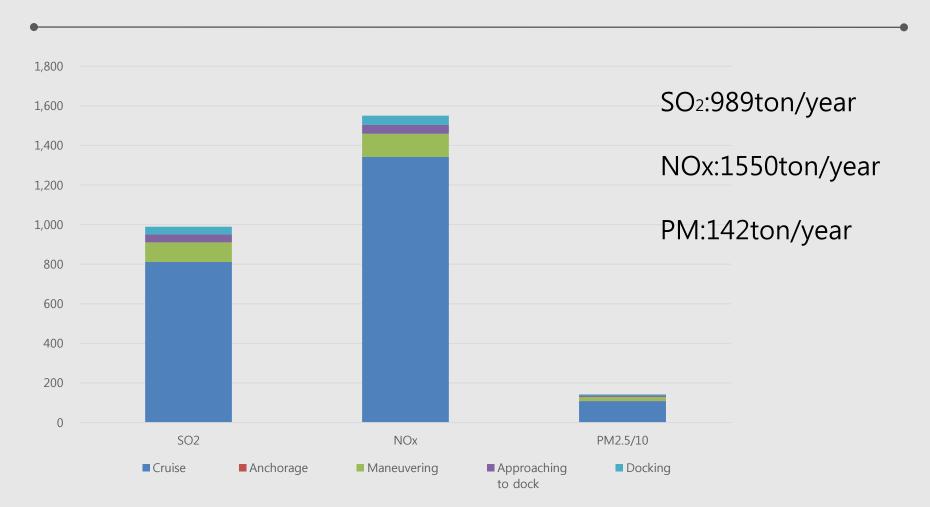
Case Study – Gold Coast Region, Chicago


- One of most densely population regions in Chicago
- Bounded on the south by Oak St and East Lake Shore Drive, on the north by North Ave, from Lake Michigan west to Clark St

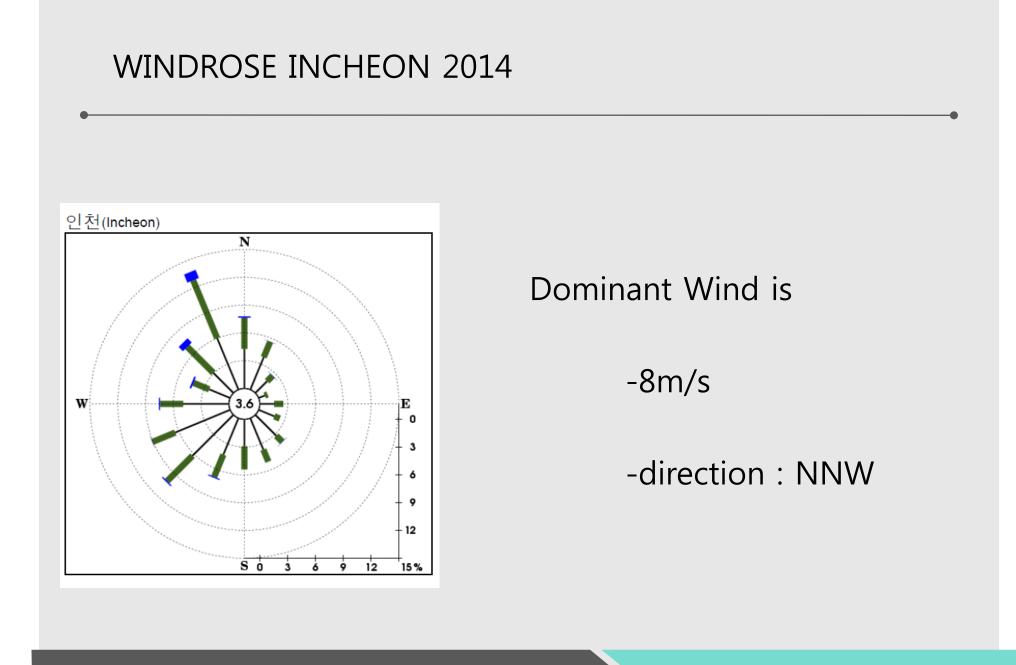
Case Study Extent

(1) 10 10 10 10 10 10 10 10 10 10 10 10 10			Map - BREEZE /	AERMOD - Gold Coast	_2.ami			- ¤ ×
Home Proje		> Reports	0bject Arrays -	Import Maps -			4470	37.1, 4639530.8 🥝
P Objects -	om In Pa View Extent	Scale Receptors +	Annotation +	Download Maps	Automatic Refresh	Copy Image		
Model	om Out View Extent All View	Appearance Drawing,	Selection - Selection, and Editing Tools	Map Manager Maps	Redraw	Output		
Layers Labels	orks							Man

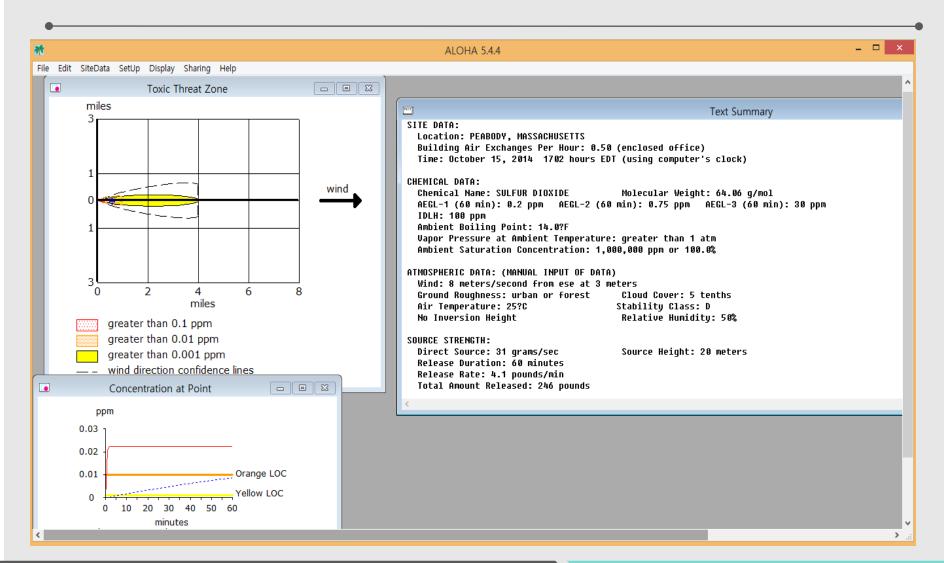
Intake Fraction – Subgroups and Microenvironments

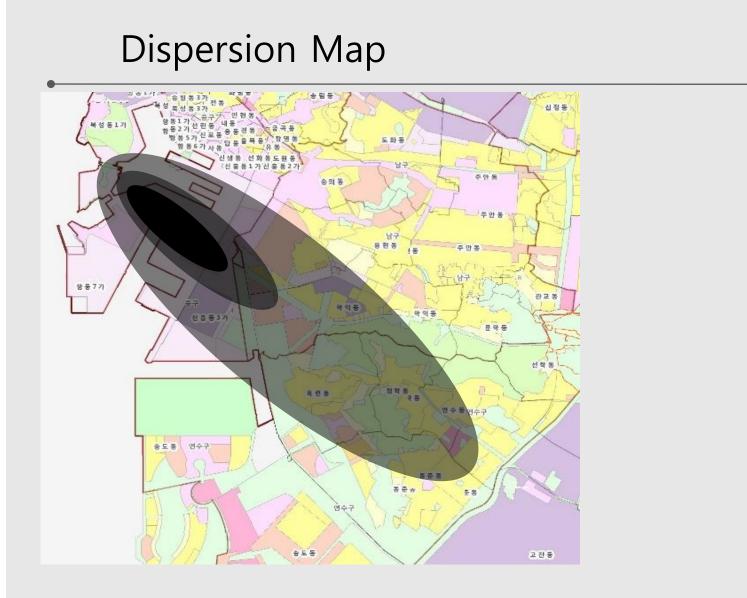

estimates of externalities: physical impacts and monetary value

	Cardiopulmonary	Circulatory	Respiratory
	deaths (persons, %)	sickness cases	sickness cases
Short-distance block	30.9 (50%)	237.4	139.3
(within 300 m)			
Medium-distance block	26.9 (43%)	206.4	121.2
(within 800 m)			
Long-distance block	4.6 (7%)	35.4	20.8
Total impacts	60.4 (100%)	479.2	281.2
Monetary value	461.875	1.591	0.884
(million \$)			
% in total monetary value	99.5	0.3	0.2


Major findings

- The long-term impact, cardiopulmonary deaths are about
 60 people, comprising 0.08 % of the total population of
 82,841 people in the case study area.
- People living within 300 meters are contributing 50% of the total physical impacts attributable to the emissions of PM from the roadway although the portions of this shortdistance area are 24% in the total population and 18% in the total number of blocks, respectively.
- Next medium-distant people between 300 m and 800 m are contributing 43% to the total impacts and the longdistant people are affected by a minor portion (7%).


Total emission



Aloha program simulation



Simulated emission table

SULFUR DIOXIDE			
THREAT ZONE: (GAUSSIAN SELECTED)			
Model Run: Gaussian	SO2	ppm	g/s
Red : 484 yards (0.1 ppm)	0.5km	0.	1 120
Orange: 1724 yards (0.01 ppm)	2km	0.0	1 90
Yellow: 4.0 miles (0.001 ppm)	4km	0.00	2 50
	10km	0.00	1 20
NITRIC ACID	NOX	ppm	g/s
THREAT ZONE: (GAUSSIAN SELECTED)	0.5km	0	1 180
Model Run: Gaussian	2km	0.0	1 150
Red : 472 yards (0.1 ppm)	4km	0.00	2 90
Orange: 1.1 miles (0.01 ppm)	10km	0.00	1 30
Yellow: 4.9 miles (0.001 ppm)			
Particulate matter	PM	ppm	g/s
THREAT ZONE: (GAUSSIAN SELECTED)	0.5km	0.0	1 12
Model Run: Gaussian	2km	0.00	1 10
Red : LOC is not exceeded (0.1 ppm)	4km	0.00	1 7
Note: Threat zone was not drawn because	10km	0.000	5 2
the ground level concentrations never exceed the LOC.			
Orange: 361 yards (0.01 ppm)			
Yellow: 1708 yards (0.001 ppm)			

Population density Map

	Total population	Male	Female
Yong hyeon	79645	40929	38716
Dong chun	60038	29687	30351
Hak ik	57803	28832	28971
Yeon su	52757	27142	25615
Ok ryeon	47786	23,772	24,014
Chung hak	31320	16032	15288
Sin hung	15372	7823	7549
Yeon an	7839	4173	3666

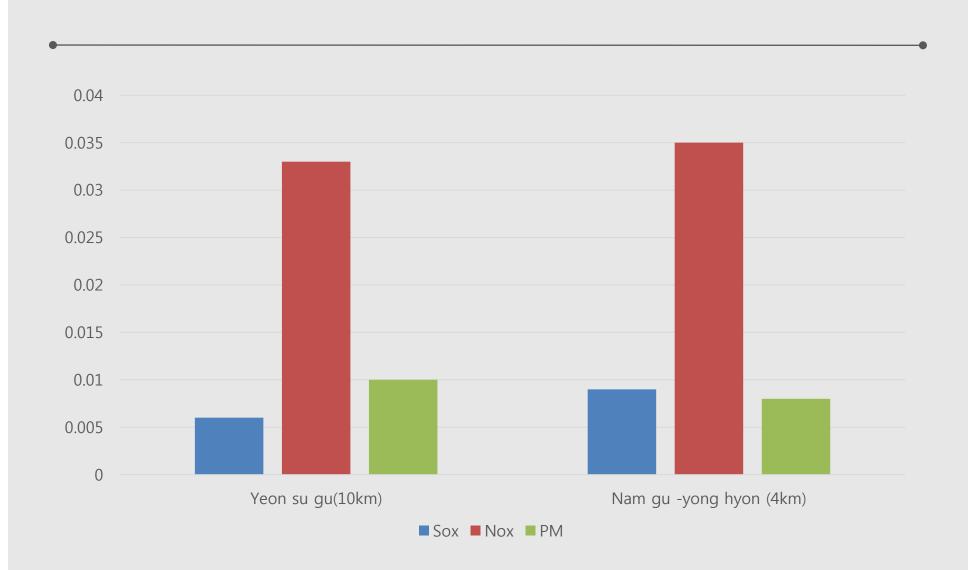
SO₂ IF density map



SO2			
	Male	Female	Total
Yeon an	1669	1173	2842
Sin hung	417	322	739
Yong hyeon	786	595	1381
Dong chun	712	583	1295
Hak ik	692	556	1248
Yeon su	651	492	1143
Ok ryeon	571	461	1032
Chung hak	385	294	678

NOx IF density map

PM IF density map



PM			
	Male	Female	Total
Yeon an	1669	1173	2842
Sin hung	376	290	665
Yong hyeon	2807	2124	4930
Dong chun	3562	2914	6476
Hak ik	3460	2781	6241
Yeon su	3257	2459	5716
Ok ryeon	2853	2305	5158
Chung hak	1924	1468	3391

Pope and Dockery

 Table 3. Comparison of estimated excess risk of mortality estimates for different time scales of exposure.

	Primary Sources	Time Scale of Exposure	% Change in Risk of Mortality Associated with an Increment of 10 $\mu g/m^3~PM_{2.5}$ or 20 $\mu g/m^3~PM_{10}$ or BS			
Study			All Cause	Cardiovascular/ cardiopulmonary	Respiratory	Lung Cancer
Daily time series	Table 1	1–3 days	0.4–1.4	0.6–1.1	0.6-1.4	_
10 U.S. cities, time series, extended	Schwartz 2000 ²¹³	1 day	1.3	-	-	_
distributed lag		2 days	2.1	-	-	_
		5 days	2.6	-	-	_
10 European cities, time series, extended	Zanobetti et al. 2002 ²¹⁵	2 days	1.4	-	-	_
distributed lag		40 days	3.3	_	_	_
10 European cities, time series, extended	Zanobetti et al. 2003 ²¹⁶	2 days	-	1.4	1.5	_
distributed lag		20 days	-	2.7	3.4	_
		30 days	-	3.5	5.3	-
		40 days	-	4.0	8.6	_
Dublin daily time series, extended	Goodman et al. 2004 ²¹⁷	1 day	0.8	0.8	1.8	-
distributed lag		40 days	2.2	2.2	7.2	-
Dublin intervention	Clancy et al. 2002 ²⁰³	months to year	3.2	5.7	8.7	-
Utah Valley, time series and intervention	Pope et al. 1992 ²⁰	5 days	3.1	3.6	7.5	-
		13 months	4.3	-	-	-
Harvard Six Cities, extended analysis	Laden et al. 2006184	1–8 yr	14	-	-	_
Prospective cohort studies	Dockery et al. 1993 ²⁶ Pope et al. 2002 ¹⁷⁹	10+ yr	6–17	9–28	-	14–44

