# ROLE OF 3D MODELLING TO REDUCE IMPACT ON PORT ENVIRONMENT

4 APRIL 2016

PECC





#### **BACKGROUND – NAPIER PORT**

- Situated in Hawke's Bay, North Island of New Zealand.
- 4<sup>th</sup> largest container terminal in New Zealand.
- Services Central North Island.
- 260,000 TEU annually.
- Peak season March to July.
- Owned by the regional council.







# 4<sup>TH</sup> LARGEST CONTAINER TERMINAL IN NZ FIGS New Zealand Port Data – Total TEU to June 2015



BETTER PEOPLE O BETTER ANSWERS



#### **TEU'S INCLUDING DLR'S ROLLING 12 MONTH ACTUAL**



BETTER PEOPLE O BETTER ANSWERS



















## SURGE PORT

- The Port suffers from long period infragravity (IG) waves, with periods 50-120 seconds.
- These waves are typically created from sets of normal swell waves crossing shallow water or shorelines.
- Source, directions etc.. not well understood and understanding is empirical.
- Cause vessels to surge at the berth, causing high mooring loads, and potentially mooring line failures.
- Napier Port used port supplied 'Shore Lines' to manage vessels in high IG situations.
- Difficult to predict the impact of developments such as breakwaters and channel deepening on IG wave climate.







#### **FUTURE CHALLENGES**

- Continued growth in both containerised and bulk cargo
- Larger vessels, up from maximum 4500TEU to 6500TEU and beyond.
- Increase in LOA (~300m).
- Increase in beam.
- Increase in draft.
- Major ports in New Zealand are already gearing up for larger vessels.
- Napier Port must be ready, or risk losing ship calls.



#### LIMITATIONS





#### BETTER PEOPLE O BETTER ANSWERS

#### **TRADITIONAL THINKING**









## SUSTAINABLE DEVELOPMENT

#### <u>Society</u>

- Maintain or enhance community amenities, such as beaches and surf breaks.
- Minimise visual impacts.
- Minimise noise impacts.
- Minimise impact on recreational fisheries.





# SUSTAINABLE DEVELOPMENT

#### **Environment**

- Minimise short and long term impact on environmentally sensitive areas such as Pania Reef.
- Minimise impact of sediment transport, which can affect existing natural processes.
- Minimise the use of construction material, in particular natural sources such as limestone or gravel.
- Maximise the beneficial use of dredge material.





# SUSTAINABLE DEVELOPMENT

#### Economic

- Be long term financially viable and allow the Port to continue functioning profitably over time.
- Consider life cycle costs.
- Support local industry, through providing a competitive and economically viable service.
- Support local jobs and industry.





### SUSTAINABLE DESIGN

# Means reduction or elimination of the proposed breakwater!:

- Reduction in short and long term costs.
- Reduction in material usage.
- Minimise change in wave climate and subsequent impacts.
- Minimise direct impact on seabed.
- Less visual impact.

#### CAN THIS BE DONE WHILST KEEPING THE DEVELOPMENT FEASIBLE?



# **MODELLING APPROACH**



#### Dynamic Mooring Analysis (DMA)

- To provide 'real-time mooring analysis to calculate impact of various breakwater options.
- Accurate representation of IG waves, the likely key limiting factor
- Use the largest data set of wave data possible.
- Analyse different mooring arrangements, including mooring line properties.
- Include fender dynamics in analysis.
- Provide likely operational performance of the proposed berth.
- Assess alternative mooring devices.





## BOUSSINESQ MODELLING

- A boussinesq model was developed using Mike21.
- A very large domain to best model the generation of IG waves, and their behaviour in the bay.
- Calibrated using the Ports wave buoy data and previous IG wave recording (Dobie Instrument).













#### ANSYS – AQWA

- Dynamic Mooring Analysis performed in ANSYS AQWA.
- Waves within the harbour modelled with AQWA, using Mike21 model as input boundary condition.
- Mike21-AQWA coupling calibrated.
- Multiple mooring configurations.
- 264 'runs' with joint probability representing a typical year.







#### CRITERIA

- Mooring Lines 55% of Max Breaking Load (OCIMF Guidelines).
- Side Shell Pressure 200kPa.
- Vessel Motions PIANC (1995).

#### Table 4-3: PIANC Motion Criteria

| Motion | Limitation Criteria for a 100% Cargo<br>Handling Efficiency | Limitation Criteria for a 50% Cargo<br>Handling Efficiency |
|--------|-------------------------------------------------------------|------------------------------------------------------------|
| Surge  | 1m peak to peak                                             | 2m peak to peak                                            |
| Sway   | 0.6m peak to zero                                           | 1.2m peak to zero                                          |
| Heave  | 0.8m peak to peak                                           | 1.2m peak to peak                                          |
| Roll   | 3deg peak to peak                                           | 6deg peak to peak                                          |
| Pitch  | 1deg peak to peak                                           | 2deg peak to peak                                          |
| Yaw    | 1deg peak to peak                                           | 1.5deg peak to peak                                        |

#### NATURAL FREQUENCIES



NAPIER

PORT



#### Table 6-1: Natural Periods of the Moored Ship Mooring Configuration 1

| Mode                 | Mode 1 | Mode 2                   | Mode 3           | Mode 4        | Mode 5     | Mode 6   |
|----------------------|--------|--------------------------|------------------|---------------|------------|----------|
| Natural Period [Sec] | 68     | 33                       | 29               | 23            | 20         | 15       |
|                      | Moor   | ing Configuration        | n 1 - 16 80mm Po | lyester Lines |            |          |
|                      |        | ·······IG Spectra, 10deg |                  | Swell         |            |          |
| MODE 1               |        | MODE 2                   |                  | MODE 3        |            |          |
| MODE 4               |        | MODE 5                   |                  | MODE 6        |            |          |
|                      | $\sim$ |                          |                  |               |            |          |
| 0.0 20.0 40          | 60.0   | 80.0                     | 100.0 120.0      | 140.0         | 160.0 180. | .0 200.0 |
|                      |        | P                        | eriod (s)        |               |            |          |

Figure 6-2: Natural Periods vs Spectral Energy

### **KEY FINDINGS**



- Mooring limits generally driven by wind and IG waves.
- IG waves are not dependent on a breakwater extension, and hence a breakwater extension has limited effect to mooring effectiveness.
- Mooring line elongation properties important, for instance Dyneema Lines were found to be too stiff and exceed loads much earlier than polyester.
- Initial analysis of ShoreTension® units, indicated potential significant reductions of vessel movement.
- Potential for further refinement of mooring configurations likely to lead to further improvements.
- Port confidence that high utilisation can be achieved.

|                          | PIAN | C Availabilit | Days                              |                                   |
|--------------------------|------|---------------|-----------------------------------|-----------------------------------|
| Mooring<br>Configuration | 100% | 50%           | Exceeded<br>(50%<br>availability) | Exceeded<br>(50%<br>availability) |
| Mooring Configuration 1  | 69.7 | 87.9          | 12.1                              | 44.3                              |
| Mooring Configuration 2  | 69.4 | 89.2          | 10.8                              | 39.3                              |
| Mooring Configuration 3  | 69.8 | 85.0          | 15.0                              | 54.7                              |
| Mooring Configuration 4  |      |               |                                   |                                   |

BETTER PEOPLE 🔘 BETTER ANSWERS

### FURTHER WORK



- Further development of the Mike21 hydrodynamic model, with increased resolution of boundaries.
- Multiple wave recording currently being undertaken to refine and calibrate the hydrodynamic model.
- Further investigations of ShoreTension® and MoorMaster.





#### QUESTIONS



