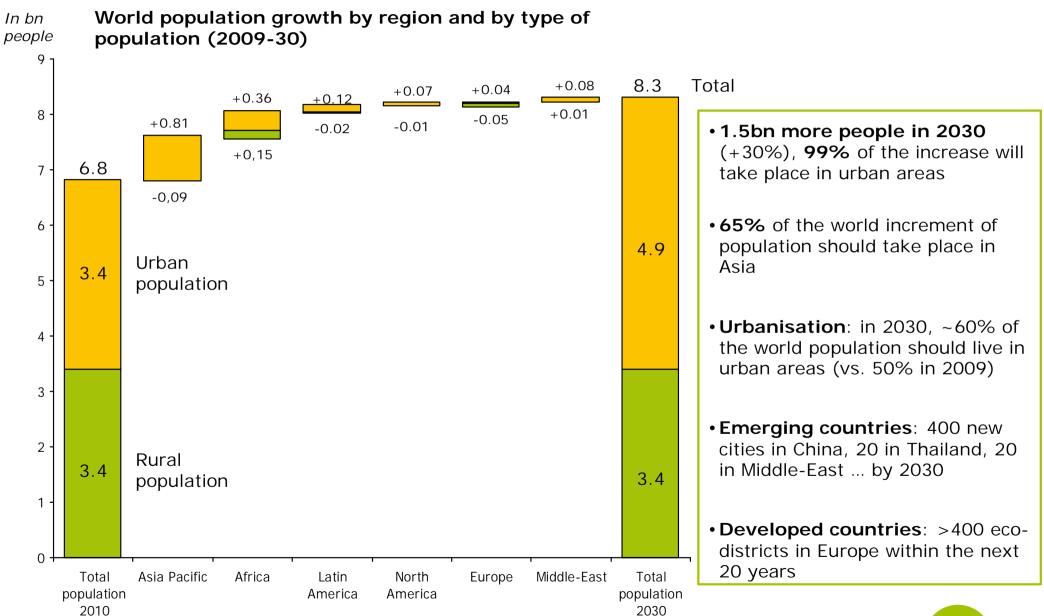
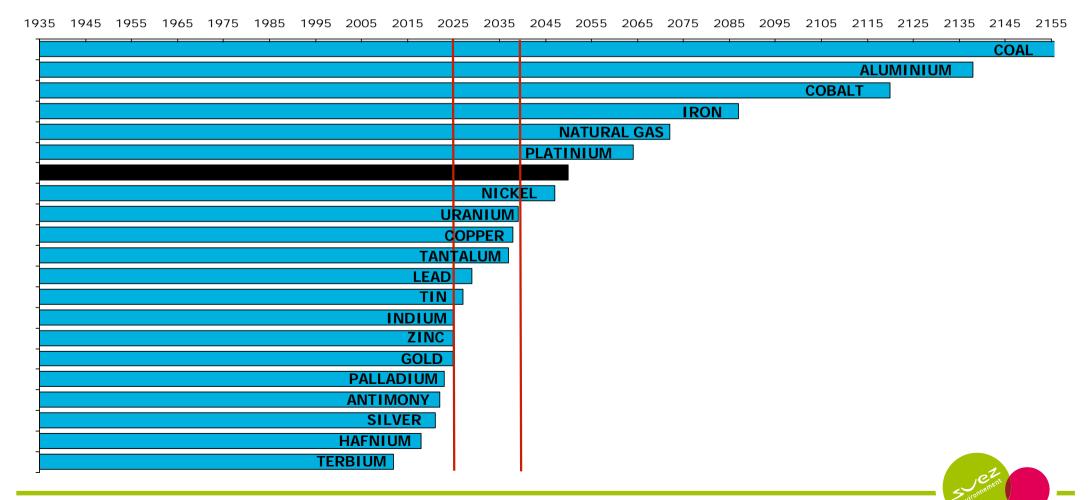
Sustainable Cities & the Circular Economy

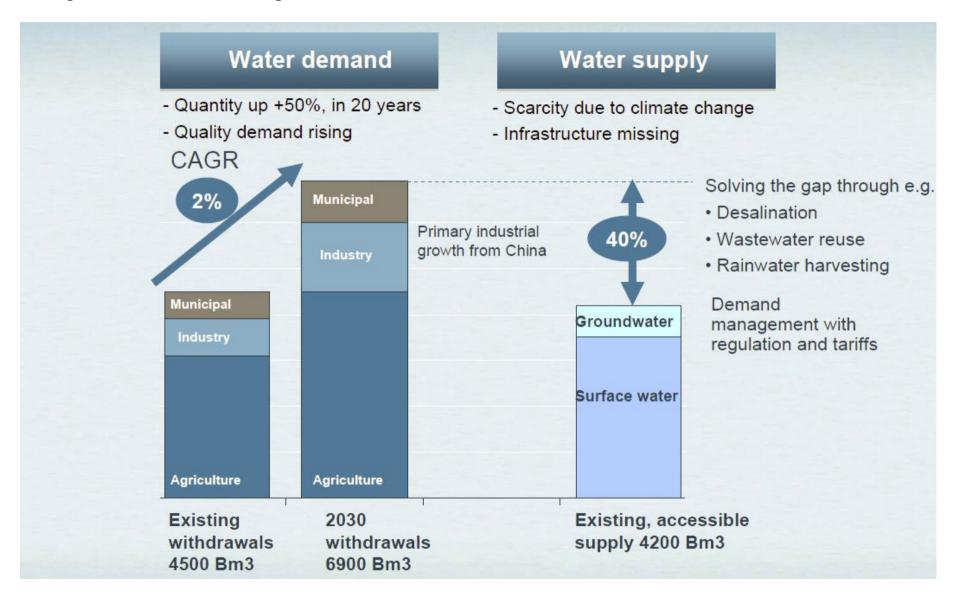
Sustainable Cities & the Circular Economy


Key drivers to changes in urban sustainability

The Circular Economy

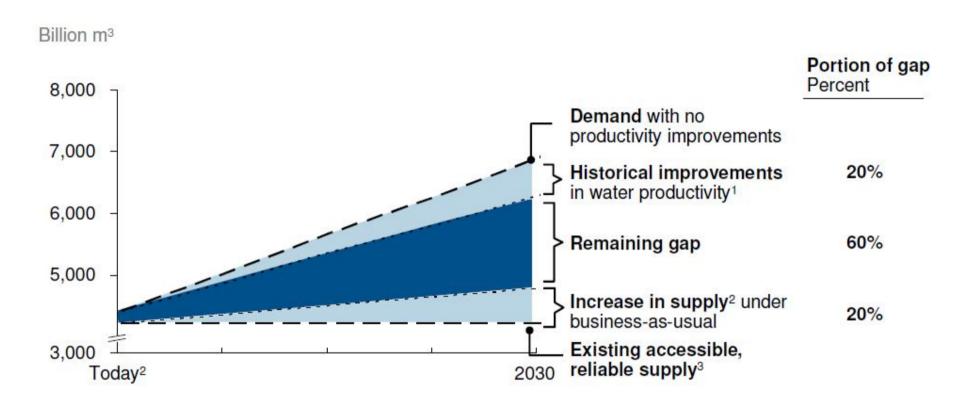
Examples of Initiatives


A rapid, mostly urban population growth ...



Raw materials scarcity and increased need for resources savings

Timeline of planet's exploitable resources depletion, based on current consumption rate


Projected scarcity of water resources

Source: Charting Our Water Future by 2030 water Resources Group, 2009. Adapted from Water 2030: Global Water Supply and Demand model; agricultural production based on IFPRI IMPACT-WATER base case

Business as usual approaches will not meet demand for raw water

SOURCE: 2030 Water Resources Group - Global Water Supply and Demand model; IFPRI; FAOSTAT

¹ Based on historical agricultural yield growth rates from 1990-2004 from FAOSTAT, agricultural and industrial efficiency improvements from IFPRI

² Total increased capture of raw water through infrastructure buildout, excluding unsustainable extraction

³ Supply shown at 90% reliability and includes infrastructure investments scheduled and funded through 2010. Current 90%-reliable supply does not meet average demand

CIRCULAR ECONOMY

Evolution of the Circular Economy

Circular economy is about sustainable production and consumption

The Circular Economy – Key Points

- Balances:
 - Economic development with
 - Environmental and Resources Protection.
- Emphasis on:
 - Most efficient use and recycling of resources, and
 - environmental protection.
- Features:
 - Low consumption of energy,
 - low emission of pollutants and
 - high efficiency.
- Replaces: conventional 'linear economics'

Key Areas for the development of sustainable cities

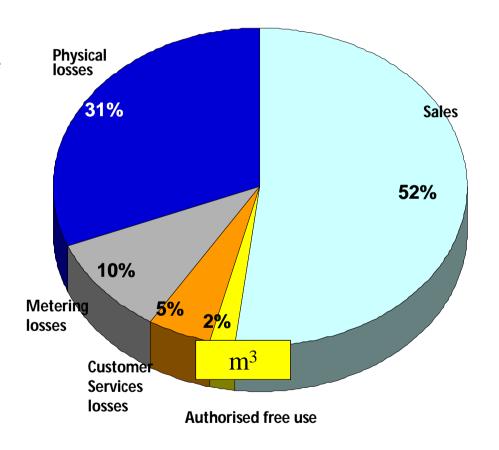
- Environmental Resources
 - Air
 - Water
 - Waste
- Energy
- Mobility
- Economic competitiveness
- Production
- Social Cohesion
- Governance
- Availability of other natural resources

EXAMPLES OF INITIATIVES WITH WATER

Some Practical Examples of Current Initiatives in the Water Sector

- Reduce Demand
- Reduce Water losses
- Securing new Water Sources
- Energy Recovery
- Reuse

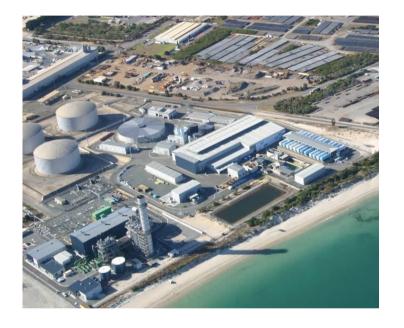
Real time Information Systems on Resource Consumption.


- Engage with the end user (local citizens).
- Provide real time information on consumption through remote meter reading
- Give people the opportunity to be pro active Reduce Demand
- Already installed for part of Paris and in Villeneuve Loubet
- Advantages for both the individual and for urban communities

Water Losses within an urban network

- Lost Water balance
- representation of the water balance by a circle;
- Actions carried out simultaneously :
- to deal with losses from the various components of network efficiency
 - Reduction of the physical losses
 - Reduction of the commercial losses

Reduce leaks by Installating Permanent Pre-Location system


- Hundreds of acoustic detection devices are distributed across the water network.
- The noise caused by the leak is detected by the sensors.
- Data is transmitted in real time using text messaging to a data analysis system.
- Rapid reaction as soon as a leak is detected.
- Installed in the Dijon network in France.
- In 2007, the city managed to save 1.2 million cubic meters of water as a result of this initiative.
- Today this system is also used in 5 other cities in France.

Securing a New Water Source: Desalination

- 40% of the population lives less than 100 kilometres from the sea.
- Out of 70 cities >1 million people with no access to additional fresh water, 42 are located on a coast.
- Desalination of sea water can provide a suitable alternative source of drinking water.
- The technology is becoming more efficient and viable.

 For a long time, this process was used only in the Gulf countries, but it is now expanding rapidly in countries facing repeated droughts like Australia and Spain

Energy Saving – Heat Recovering

Recovering heat from wastewater to reduce GHG emissions

Up to 60 % reduction in consumption of non-renewable energies

Up to 70 % reduction of GHG emissions compared to a traditional thermal system

Custom made recycled water

- A new concept developed for integrated resource management: production of custom-made recycled water for various reuse purposes.
- Edward C. Little Water Recycling Facility (ELWRF) in El Segundo, California
 - One of the largest water recycling facilities in the world
 - The only facility in the United States producing 5 distinct types of recycled water
- Production of over 240,000 m3/d of high quality recycled water
- Various reuse purposes, including:
 - landscape irrigation,
 - industrial use and
 - aquifer recharge.
- The key to success:
 - implementation of advanced technologies
 - A spirit of technical innovation

Sludge reuse for Agriculture purpose – Noosa WWTP

- First private sector developed urban sewage plant in Australia
- Leading edge plant, using environmentally advanced methods of treatment, that is chemical-free and benchmarked at world's best.
- Sludge Treatment steps:
 - Aerobic digestion
 - Sludge dewatering
- The dewatered sludge is transported 350km away for agricultural reuse:
 - Soil conditioner for Wheat growing
 - Soil conditioner for cotton growing
- Average daily production: 36 Tonnes

WASTE SECTOR

The circular economy in the waste sector

- Change our perspective of waste treat waste as a resource.
- In the circular economy model, it is treated to become a secondary resource.
- Waste has to be treated so that it can either be:
 - products recycled and used as a resource in the manufacture of new
 - returned to the economic cycle in the form of recovered energy.
- the circular economy can only operate effectively if markets can be found for the created products.
- Maintaining the product quality is vital.

CONCLUSIONS

- Projection of Significant Urban Population Growth by2030
- Mostly in the Asia Pacific Region
- Urgent need for Sustainable Resource Management
- Focus on the Circular Economy as a solution someone's waste is another persons feedstock
- There are significant initiatives currently underway
- More focus is required to solve the sustainability challenges of future cities

ABOUT GDF SUEZ & SUEZ ENVIRONNEMENT

GDF SUEZ, A major industrial player in the energy, water and waste sectors

- •€ 84.4 billion in 2010 revenues
- N°1 utility worldwide in Forbes' ranking
- •N°1 in independant power generation in the world
- •N°1 supplier to cities and businesses across Europe in Energy Services
- 214,000 employees throughout the world
- •1,200 researchers and experts in 9 R&D centres

- •N°2 in Environmental Services in the world
- •€ 13.8 billion revenues in 2010
- •78 000 employees throughout the world

SUSTAINABLE CITIES - DEVELOPMENT CHALLENGES